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Abstract

Effective digital hardware design fundamentally requires
decomposing a design into a set of interconnected mod-
ules, each a distinct unit of computation and state. However,
naively connecting hardware modules leads to real-world
pathological cases which are surprisingly far from obvious
when looking at the interfaces alone and which are very diffi-
cult to debug after synthesis. We show for the first time that
it is possible to soundly abstract even complex combinational
dependencies of arbitrary hardware modules through the as-
signment of IO ports to one of four new sorts which we call:
to-sync, to-port, from-sync, and from-port. This new
taxonomy, and the reasoning it enables, facilitates modular-
ity by escalating problematic aspects of module input/output
interaction to the language-level interface specification. We
formalize and prove the soundness of our new wire sorts, im-
plement them in a practical hardware description language,
and demonstrate they can be applied and even inferred au-
tomatically at scale. Through an examination of the Base-
Jump STL, the OpenPiton manycore research platform, and
a complete RISC-V implementation, we find that even on our
biggest design containing 1.5 million primitive gates, analy-
sis takes less than 31 seconds; that across 172 uniquemodules
analyzed, the inferred sorts are widely distributed across our
taxonomy; and that by using wire sorts, our tool is 2.6ś33.9x
faster at finding loops than standard synthesis-time cycle
detection.
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1 Introduction

In our current era of diminished transistor scaling, the need
for higher levels of energy efficiency and performance is
greater than ever. The quest to achieve these goals calls for
more people to be able to participate in the creation of ac-
celerators and other digital hardware designs. It has become
common for hardware designers to utilize commercial li-
braries (known as Intellectual Property or IP catalogs) to get
hold of the most efficient or performant hardware compo-
nents. At the same time, open-source hardware has begun to
emerge as a viable development strategy, drawing parallels
to open-source software, due to the commercial benefits of
exploiting free and open components. This new development
paradigm raises questions of how hardware developers can
best compose their components and treat their underlying
implementations as opaque.
Modern high-level programming languages have many

mechanisms that work in support of effective modularity
and abstraction; for example, one might place requirements
on data (e.g. arguments) at an interface (e.g. function call)
through a type system. Most hardware description languages
(HDLs), in contrast, have comparatively little support for
these features. The interface of the primary unit of abstrac-
tion, a module, is typically described simply as łwires” which,
in turn, may be refined as łinput” or łoutput.” However, we
find experimentally across hundreds of designs that these
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interfaces actually carry surprisingly complex requirements
not just on how the data are to be used or interpreted but even
on what compositions leads to well-defined digital designs.
The goal of our work is to turn a programming language eye
to this problem: to be mathematically precise in the defini-
tion of wired interfaces and ultimately give more support
to hardware designers seeking modularity, abstraction, and
better compositional guarantees at the HDL level.
We wish to support a scenario where (1) separate hard-

ware designers can independently create a set of hardware
modules according to some connection protocol using an
HDL, and the HDL can automatically infer relevant prop-
erties about the input and output wires for each module in
isolation; (2) a hardware designer can treat these modules as
opaque components without knowledge of their internals,
wiring them together into a circuit such that the HDL provide
guarantees based on the properties of the modules’ input
and output wires; and (3) the number of design łsurprises”
discovered late in the development cycle due to intermodular
incompatibilities is significantly reduced.

Such a scenario is increasingly not just desirable but strictly
necessary. In the traditional design methodology where a
whole chip may be designed by a single company or team
who can agree on interfaces in advance and readily inspect
modules’ internals, establishing modules’ compositionality
was straightforward. However, this is a much stickier prob-
lem in a world of IP-driven design where the user of a module
may have no knowledge of the module’s internals, perhaps
even working with an obfuscated or encrypted design [12].
IP catalog designers today lack any clear specification of
the module-level connection properties needed to ensure
well-composed designs. Thus, it is incredibly easy to create a
design that assumes something about an up- or downstream
interface which only becomes apparent after the full design
has been completed at the RTL level. Discovering such an
issue late in the process can be a serious issue because the
exact cycle a data value is produced might need to change to
accommodate a different interface. While this sounds easy in
theory, traditional RTL design practices are fragile to timing
changes, and fixing problems might mean significant surgery
to control state machines, the recoordination of multiple pro-
ducers or consumers, or even failure to meet a latency goal.
As we ask a broader set of engineers to engage in the hard-
ware design process, whether to understand tradeoffs in an
AI accelerator design or deploy computation into an FPGA in
the cloud, we need languages that help steer effort towards
realizable designs and reduce the number of łsurprises” (i.e.
failures) typically only found at the very last stages of im-
plementation (at synthesis time).
The specific property that we focus on in this work is

what we are calling well-connectedness; we formally specify
the property in Section 3.4 but informally, it implies that

the final circuit does not contain any combinational loops.1

Combinational loops are a sign of a broken design (except in
certain rare circumstances) and must be avoided. Such loops
are easy to spot once all components have been fully imple-
mented and then synthesized into a netlist (one need only
look for cycles in the netlist graph) but are hidden through
the entire process of design at the HDL level, especially when
they cross module boundaries and require reasoning about
multiple modules’ internal structures. This is a real prob-
lem we have encountered in our experiences writing digital
hardware designs, motivating us to find better ways via pro-
gramming language abstraction and enforcement.

This problem of avoiding combinational loops at the HDL
module level is surprisingly subtle, requiring that designers
reason about a number of non-obvious corner cases. Well-
connectedness cannot always be guaranteed by looking at
pair-wise module interconnections but is in fact a property
of the entire circuit requiring information about all modules
at once. Nevertheless, we show that it is possible to anno-
tate module interfaces at the HDL level for each module
independently such that the well-connectedness of a given
combination of modules can be automatically proven by only
looking at these interface annotations. We further show that
if a full implementation of the design is already available,
such as for legacy code, we can automatically infer anno-
tations directly from the design. These annotations in turn
radically lessen the number of interfaces where łsurprises”
might occur, allowing designers to focus their attention more
effectively. The specific contributions of this paper are:

• We are the first to apply a modular static analysis to
the problem of ensuring the correct compositionality
of hardware modules in arbitrary RTL, via a global
property which we define as well-connectedness.

• We prove this property is achievable in amodular way
via a mathematical specification of wire dependencies,
developing a novel taxonomy of sorts: to-sync, to-
port, from-sync, and from-port.

• We embody these properties, and the analysis they
enable, in a usable and scalable tool that completely
prevents the late discovery of combinational loops. We
further propose an extension to the analysis to protect
synchronous memory semantics through composition.

• We analyze more than 500 parameterized hardware
modules to quantify, for the first time, the diversity
of expectations placed on module interfaces found in
the wild. Across three independent projects (BaseJump
STL, OpenPiton, and a RISC-V implementation) our
analysis is able to automatically infer the correct wire
sorts to enable composability in less than 31 seconds.

1This is a necessary but not sufficient condition for overall correctness. For

example, we are not concerned in this paper about checking that a specific

protocol is being correctly followed. Our techniques could potentially also

reason about properties related to timing and circuit layout, but we leave

these for future work.
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Our analysis is 2.6ś33.9x faster at finding intermodular
loops than standard cycle detection during synthesis.

2 Motivation and Related Work

To demonstrate the problem, we use the example of a simple
first-in first-out (FIFO) queue using the ready-valid proto-
col, as shown in Figure 1. The role of the FIFO queue is to
accept input data from one module (at the consumer end-
point), buffer that data inside its internal state, and then
send the data to another module (at the producer endpoint)
upon request. The consumer endpoint consists of a set of
wires: datain contains the data being sent to the FIFO; validin
determines whether the incoming signals on datain repre-
sent valid input from the connected module; and readyout is
an outgoing signal indicating whether the FIFO is ready to
accept input (i.e., it isn’t full). Similarly, the producer end-
point consists of another set of wires: dataout contains the
data being produced by the FIFO and read from another con-
nected module; validout determines whether the outgoing
signals on dataout represent valid data from the FIFO (i.e., it
isn’t empty); and readyin is an incoming signal indicating
whether the connected module is ready to receive data from
this FIFO.

Figure 1. Normal FIFO Queue. The consumer endpoint re-
ceives data from one module, and the producer endpoint
sends data to another module.

We have left the internals of the FIFO opaque (as they
may realistically be to a user); the details do not matter
for our purposes except to note that each FIFO endpoint is
combinationally independent of the other. In other words,
every path between the endpoints is interrupted by some
state inside the FIFO, so that an action at one endpoint cannot
affect the other endpoint within a single cycle.
A FIFO queue of this kind is often called a łuniversal in-

terface” because it can be placed between any two modules
without danger of ill effects due to timing issues. However,
for various reasons (such as efficiency) a normal FIFO queue
may not be appropriate. A forwarding FIFO improves effi-
ciency by allowing data entering in one clock cycle to be
immediately sent out in the same clock cycle if the FIFO
is empty. An abstract depiction of this module is shown in
Figure 2.

Figure 2. Forwarding FIFO Queue.

The important points for our purposes are that: (1) the
module interface (i.e., the ready-valid endpoint specification)
is unchanged from the normal FIFO, so that from a module
connection standpoint the two are indistinguishable; and (2)
the endpoints are no longer combinationally independent
because there is a combinational path from one endpoint
to the other, enabling the data forwarding that is the whole
point of the new module. Here’s a closer look at the combi-
national logic used for assigning to validout across the two
FIFO modules (where 𝑐𝑜𝑢𝑛𝑡reg is a register containing the
number of enqueued elements):

• Normal:

validout F (𝑐𝑜𝑢𝑛𝑡reg > 0)

• Forwarding:

validout F (𝑐𝑜𝑢𝑛𝑡reg > 0) ∨ (validin ∧ readyout)

This combinational dependence between the endpoints
means that designers may inadvertently cause a combina-
tional loop when they wire modules together. In fact, the
problem may not even arise due to direct interactions be-
tween the queue and the modules connected to its endpoints,
but rather due to indirect interactions mediated by yet other
modules. We show an example of a problematic circuit in
Figure 3.

Figure 3. Forwarding FIFO connected to other modules caus-
ing a combinational loop (in blue). Only pertinent IO ports
have been shown for each module.

177



PLDI ’21, June 20ś25, 2021, Virtual, Canada Michael Christensen, Timothy Sherwood, Jonathan Balkind, and Ben Hardekopf

Here we have three modules: a normal FIFO, a forward-
ing FIFO, and some module X. In this contrived example,
the normal FIFO sends a signal to module X that is some
combinational function of its validin wire (here, a direct con-
nection); module X sends some combinational function of
its input to the forwarding FIFO’s validin, which (as previ-
ously discussed) is a combinational input to the forwarding
FIFO’s validout, which in turn is wired to the normal FIFO’s
validin. If the forwarding FIFO were instead a normal FIFO
(which at a module connection level looks the same) then
this would be fine, but since it is not this circuit contains a
combinational loop. Detecting and understanding the cause
of the loop requires reasoning about the internal details of
three different modules.

We note that detecting the existence of the combinational
loop is simple once the HDL program has been synthesized
to a netlist: simply perform a standard cycle detection al-
gorithm. Verilog [40] synthesis tools such as the linter in
Verilator [32] and the Yosys synthesis suite [42] and HDLs
such as Chisel [2] and PyRTL [15, 17] can provide warnings
about loops during synthesis. However, relying on loop de-
tection at synthesis time has several drawbacks. First, gate-
level netlists take a long time to produce and are signifi-
cantly larger (47X larger in one example we studied), since
high-level and multi-bit operations have been transformed
into sets of simple 1-bit primitive gates. Second, these detec-
tion systems aren’t infallible: under certain combinations of
flags or optimizations, tools like Yosys fail to detect loops or
silently delete them, łsuccessfully” synthesizing the offend-
ing circuit. Third, once the loop is detected after synthesis,
it is entirely up to the designer to trace the synthesized loop
back to the relevant modules and interactions in the original
HDL program.
The RTL, on the other hand, has fewer gate dependen-

cies to analyze while still representing the same dataflow
graph. Going up one level of abstraction, the behavioral level
describes the same system algorithmically, making it even
easier to take advantage of high-level constructs for deter-
mining dependency. Thus, our goal is to raise the level of
abstraction for detecting loops up to the HDL module level
in order to give the designer maximum information and con-
text, to avoid loops more easily, and to detect loops sooner in
the design process. An apt analogy is the difficulty in trying
to determine the cause of an assembly-level link time error
versus one presented at the source level; we aim to do the
latter for HDLs.
There do exist HDL-level tools to check certain kinds of

properties, for example SystemVerilog Assertions (SVA) [25],
Property Specification Language (PSL)/Sugar [20, 24], and
Open Verification Library (OVL) [23]. These frameworks
facilitate the specification of temporal relationships between
wires, which are checked via simulation or model checking
rather than statically at design time. These tools can express
properties about the relative order in which things occur

but not the reasons why they occur. Since our analysis is
concerned with the exact causes of events (i.e., combina-
tional dependencies between wires), we believe from our
experience using these tools that they are not suitable for
our purpose.
There is additionally a long history of using higher-level

abstractions to describe hardware formally [14, 31] and of
using richer type systems [21] and functional programming
techniques [5, 22, 28, 30]. DSLs like Mur𝜑 [18] and Dahlia
[29] target specific use cases like protocol descriptions or im-
proved accelerator design, while high-level synthesis (HLS)
techniques [7, 16] translate subsets of C/C++ to RTL. Other
HDLs [38] like PyMTL [26], C𝜆ash [1], Pi-Ware [19], Hard-
Caml [33], BlueSpec [6], and Kami [13] also use modern pro-
gramming language techniques to overcome some of the is-
sues that arise when writing in traditional HDLs [34, 35]; like
many of them, we focus on improving the register-transfer
level design process by creating better and more expressive
abstractions.

2.1 BaseJump STL

The closest work to our own is BaseJump STL [37, 43]. Their
work discusses the requirements for creating a library of
hardware modules (analogous, in their words, to the C++
standard template library) and introduces some informal
terminology to help describe module interfaces and promote
properties such as well-connectedness. They draw upon the
principles of latency-insensitive hardware design [8ś11] but
aim for a less restrictive model.

BaseJump STL informally defines the notions of helpful
and demanding module interface endpoints (such as the
ready-valid endpoints from the previous FIFO example). The
distinction is based on whether an endpoint is able to of-
fer up data without łwaiting” for input. For the ready-valid
protocol, a helpful producer offers validout upfront while
a demanding producer waits for readyin before comput-
ing and emitting validout. Similarly, a helpful consumer
offers readyout upfront while a demanding consumer waits
for validin before computing and emitting readyout. Base-
Jump STL creates a taxonomy of interface connections based
on the various combinations of helpful and demanding

endpoints. They note that the only unsafe combination is a
demanding-demanding connection, which would directly
lead to a combinational loop.

The problem with BaseJump STL’s approach is that it con-
siders module endpoint connections in isolation: the notion
of dependence inherent in the demanding and helpful clas-
sifications only considers wires that directly participate in
the connection. However, this isn’t sufficient to guarantee
detection of combinational loops, as we have shown with our
previous example of a problematic circuit in Figure 3. In that
example, the forwarding FIFO’s producer endpoint is con-
sidered helpful because validout is offered without needing
to wait on readyin. The normal FIFO’s consumer endpoint is
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consideredhelpful because readyout doesn’t wait on validin.
According to BaseJump STL’s model, these modules have a
helpful-helpful connection and are therefore safe. But as
we have demonstrated, the design is actually faulty due to
the third module in the circuit and how it interacts with the
connection between the forwarding and normal FIFOs.
We discovered the issues with BaseJump STL’s notions of

helpful and demanding endpoints when we attempted to

formalize them and prove that they were adequate to detect

combinational loops at the HDL module level of abstraction.

Our experience led us to conclude that in order to guarantee
well-connectedness, we need to: (1) be able to reason about
module endpoints based on wire dependencies between the
input and output wires within a module; and (2) using only
the resulting endpoint annotations, reason about an entire
circuit at the module level to resolve possible loops intro-
duced by interactions between multiple modules.

3 Wire Sorts and Well-Connectedness

In this section we define our notion of wire sorts, formalize
the property of well-connectedness using these sorts, and
prove a set of properties that can be used to demonstrate
that a circuit composed of independently designed modules
is well-connected. Finally, we show exactly how our defini-
tions contrast to BaseJump STL’s notions of helpful and
demanding endpoints and how our approach avoids the
problems that BaseJump STL encounters.

3.1 Defining Basic Domains

We formally define a set of basic domains that collectively
comprise a circuit composed of independent modules, so that
we can precisely define wire sorts and well-connectedness
and prove that a well-connected circuit has no combinational
loops. Our formalisms and techniques apply to synchronous
digital designs, and we assume for simplicity that there is a
single clock driving all stateful elements (both are properties
of the most commonly found designs).
A wire is denoted by𝑤𝜎 where 𝜎 ∈ {const, reg, in, out,

basic}. A constant wire𝑤const produces a 0 or 1, an input
wire win serves as input into a module, and an output wire
wout serves as output from a module. Registers are stateful
elements that are latched each cycle according to the same
shared clock; the𝑤reg wires represent the outputs of these
registers. Basic wires𝑤basic are used to connect or combine

these wires together via nets. A 𝑛𝑒𝑡 is a tuple (−→𝑤𝜎 ,𝑤𝜎 , op)

representing a gate, with multiple wires −→𝑤𝜎 coming into
the gate, a single wire 𝑤𝜎 coming out of the gate, and a
bitwise logical operation op denoting the type of gate such

that𝑤𝜎 = op(−→𝑤𝜎 ).

Amodule𝑀 is a tuple (−−→win,
−−−→wout,

−−→
𝑛𝑒𝑡) composed of sets of

input wires, output wires, and nets representing a directed
acyclic graph (DAG); in this DAG, the nets are nodes, and
the outputs of the nets are the forward edges in the graph.

Figure 4. Example for computing the output-port-set and
input-port-set of a module 𝑀 . The output-port-set of input
w4in is {w2out} and ∅ for the other inputs. The input-port-set
of w2out is {w4in} and ∅ for w1out.

The input and output wires form the module’s external in-

terface. Given a module 𝑀 = (−−→win,
−−−→wout,

−−→
𝑛𝑒𝑡) we will use

the shorthand𝑀.inputs,𝑀.outputs, and𝑀.nets to mean −−→win,
−−−→wout, and

−−→
𝑛𝑒𝑡 , respectively.

A circuit 𝐶 is a tuple (
−→

𝑀 ,
−−−−−−−−−→
(wout,win)) composed of a set

of modules𝐶.modules and the connections𝐶.conns between
their inputs and outputs. Given 𝑀1, 𝑀2 ∈ 𝐶.modules and
two wires wout ∈ 𝑀1.outputs and win ∈ 𝑀2.inputs, we
use wout →𝐶 win to mean that wout is directly connected
to win, i.e., (wout,win) ∈ 𝐶.conns. We define the function
module(win,𝐶) = 𝑀 iff win ∈ 𝑀.inputs ∧ 𝑀 ∈ 𝐶.modules.

Without loss of expressiveness, we assume that one module’s
outputs are always connected directly to another module’s
inputs.2 Note that a circuit𝐶 and its set of modules𝐶.modules

can essentially define a larger module composed of submod-

ules. A circuit composed of many of these łsupermodules”
connected together in turn makes an even larger module,
ad infinitum. Thus the intra- and intermodular analyses we
discuss in the following sections are fully generalizable to
the notion of submodules common in popular HDLs.

3.2 Defining Combinational Reachability

We define two different levels of combinational reachability:
one intra-modular that can be computed for each module
independently and one inter-modular that involves the entire
circuit.
Given a module 𝑀 containing a wire 𝑤𝜎 , we define the

combinationally reachable set reachable(𝑀,𝑤𝜎 ) as the set
of wires reachable from𝑤𝜎 in𝑀.𝑛𝑒𝑡𝑠 without going through
any wire 𝑤reg; in other words, the transitively reachable
wires that don’t go through any registers (state).

We can now define two terms that will be important for
determining combinational reachability at the module level
without needing the internal details of the relevant modules:
output-port-set and input-port-set. The output-port-set
is relevant for module inputs: given module 𝑀 and input
win, the output-port-set output-ports(𝑀,win) is the set of

2If there is any extra-modular logic between modules, one can wrap that

logic into its own module to trivially meet this condition.
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(a) A from-sync wire w1out connected to a to-

sync wire w2in.

(b) A from-sync wire w1out connected to a to-

port wire w2in.

(c) A from-port wire w1out connected to a to-

sync wire w2in.

Figure 5. Connections between to-sync or from-sync wires cannot result in combinational loops.

module output wires that are combinationally reachable from
that input wire. In other words, output-ports(𝑀,win) =

reachable(𝑀,win) ∩ 𝑀.𝑜𝑢𝑡𝑝𝑢𝑡𝑠 . Similarly, the input-port-
set is relevant for module outputs: for an output wire wout

of module 𝑀 , the input-port-set input-ports(𝑀,wout) is
the set of module input wires that combinationally reach
that output wire. In other words, input-ports(𝑀,wout) =

{win | win ∈ 𝑀.𝑖𝑛𝑝𝑢𝑡𝑠,wout ∈ output-ports(𝑀,win)}.
These sets need only be computed once permodule definition
(regardless of how many instantiations are used in a circuit).

To illustrate these definitions consider the module dia-
gram in Figure 4. In this module, which we’ll call 𝑀 , the
output-port-set of input w4in is output-ports(𝑀,w4in) =

{w2out}, while the output-port-set of each of the inputs
w1in,w2in,w3in is ∅. The input-port-set of output w1out is ∅,
while the input-port-set ofw2out is input-ports(𝑀,w2out) =

{w4in}.
Given a circuit composed of multiple modules along with

the output-port-set and input-port-set for each input and
output wire of each module, we can compute inter-modular
combinational loops without needing to inspect the internals
of any module. The transitive forward reachability of any
output wire amounts to a fixpoint computation involving
the output-port-sets of the modules in the circuit; while trac-
ing a path from between wires, if a module input wire is
encountered, skip over its module’s internal logic by con-
tinuing with the output wires in its output-port-set. We use
𝑤1{𝐶𝑤2 to denote that wire𝑤1 transitively affects wire𝑤2

in circuit 𝐶 and call{𝐶 the TransitivelyAffects relation.

3.3 Wire Sorts

We can now formally define the novel set of sorts for mod-
ule input and output wires, a key contribution of this paper.
An input wire win is to-sync if output-ports(𝑀,win) = ∅

and is to-port otherwise. An output wirewout is from-sync

if input-ports(𝑀,wout) = ∅ and is from-port otherwise.
The to-sync, to-port, from-sync, or from-port designa-
tion of a wire is its sort, and this set of sorts is sufficient to
label all module ports. In Figure 4, the sort of input wires
w1in,w2in,w3in is to-sync while the sort of w4in is to-port.

Of the outputs, the sort of w1out is from-syncwhile the sort
of w2out is from-port.

Note that an input wire of sort to-sync cannot be involved
in a combinational loop, nor can an output wire of sort from-

sync. By definition, these wires terminate or originate in
some stateful or constant-valued element, and therefore mod-
ule interface wires of these sorts can be freely connected
to other modules safely without regard to the connected
module’s interface wire sorts or the rest of the circuit. This
leads us to our first property.

Property 1. Two connected wires wout and win cannot be

involved in a combinational loop if wout is from-sync or win

is to-sync.

Proof. Given a module 𝑀1 such that wout ∈ 𝑀1 .𝑜𝑢𝑡𝑝𝑢𝑡𝑠 , if
wout is from-sync, then input-ports(𝑀1,wout) = ∅, mean-
ing it does not combinationally depend on any module input.
Similarly, given a module 𝑀2 such that win ∈ 𝑀2 .𝑖𝑛𝑝𝑢𝑡𝑠 , if
win is to-sync, then output-ports(𝑀2,win) = ∅, meaning
it does not combinationally affect any module output. □

In Figure 5a, from-sync wire w1out is connected to to-

syncwirew2in, while in Figure 5b, it is connected to to-port
wirew2in. We can see that it doesn’t matter what sort of input
w1out connects to, since there is at least one stateful element
shielding w1out from being fed into itself combinationally:
the stateful elements of𝑀1 in both figures and additionally
the stateful elements of 𝑀2 in Figure 5a. In both cases, it
doesn’t matter what modules𝑀3 . . . 𝑀𝑛 may do or any other
output𝑀1 may have that could possibly feed into them. Sim-
ilarly, in Figure 5c, because from-port wire w1out is con-
nected to to-sync wire w2in, we can know even without
analyzing the entire circuit that this particular connection is
safe.

3.4 Defining Well-Connectedness

There are cases, like our previous example of a forwarding
FIFO queue in Section 2, where it doesn’t make sense to
require that module interface wires be only to-sync or from-

sync. Relaxing this requirement means we cannot rely solely
on Property 1 for establishing safety between wires, and so
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(a) A from-port wire w1out connected to a to-port

wire w2in, which through interactions with other

modules can be shown to not result in a combina-

tional loop.

(b) A from-port wire w1out connected to a

to-port wire w2in resulting in a combina-

tional loop.

(c)A from-portwirew1out connected to a to-

port wire w2in, which cannot be determined

to be well-connected until the entire circuit

has been completed.

Figure 6. Connections between from-port or to-port wires might result in combinational loops.

wemust more precisely define our notion of inter-wire safety
as follows:

Definition 3.1 (Wire Well-Connectedness). Given a circuit
𝐶 and two modules 𝑀1, 𝑀2 ∈ 𝐶.modules (where 𝑀1 may
be 𝑀2), an output wire wout ∈ 𝑀1.outputs, and an input
wire win ∈ 𝑀2.inputs such that wout →𝐶 win, wout is well-

connected to win iff ∀𝑤1 ∈ input-ports(𝑀1,wout), ∀𝑤2 ∈

output-ports(𝑀2,win),𝑤2 ̸{𝐶𝑤1.

It is straightforward to show that it satisfies our desired
safety property:

Property 2. The connection between two wires wout and win

that are well-connected to one another does not introduce a

combinational loop.

Proof. By definition, all of the input wires 𝑤1 in 𝑀1 that
combinationally affect wout are present in its input-port-set.
Likewise, by definition, all of the output wires𝑤2 in𝑀2 that
are combinationally affected bywin are in its output-port-set.
If it is impossible to transitively trace any output wire 𝑤2

through the nets it combinationally affects to any input wire
𝑤1 that wout is awaiting, then no combinational loop has
been introduced by wout → win. □

We illustrate this property in Figure 7 below.

Figure 7. Illustration of theWireWell-Connectedness defini-
tion. Given a circuit 𝐶 , well-connectedness for a connection
(wout,win) ∈ 𝐶.conns occurs when there does not exist an
output port 𝑤2 in win’s output-port-set that is transitively
connected ({𝐶 ) to any wire𝑤1 in wout’s input-port-set.

Any wires of sort to-port or from-port are potential
problems, so we cannot in general determine safety without
inspecting the entire circuit. For example, Figure 6a and
Figure 6b both show two connected modules with a from-

port output wire connected to a to-port input wire, but in
the former case it does not result in a combinational loop
while in the latter it does. Note, however, that we still do not
need to inspect the internals of any modules as long as we
know the sorts of their interface wires.

We can distinguish between the examples in Figure 6a and
Figure 6b by defining a safe class of connections to from-

port sorts, called safely from-port:

Definition 3.2 (Safely From-Port Wires). A from-port out-
put wire wout connected to a to-port input wire win is called
safely from-port with respect to win if wout and win are
well-connected according to Definition 3.1.

A safely from-port outputwire combinationally depends
on some module input wires (and hence its value is not valid
until those inputs have propagated to the output wire later
in the clock cycle) but still guarantees the absence of com-
binational loops with respect to certain connected wires. In
Figure 6a, the dependent output wire w1out is safely from-

port with respect to w2in, and hence the overall circuit is
well-connected since w1out is not connected to anything else.
In contrast, in Figure 6b the from-port output wire w1out

is not safely from-port and hence the overall circuit is not
well-connected.

Determining whether a wire is safely from-port or not
requires the complete circuit in order to compute the Transi-
tivelyAffects relation. Figure 6c demonstrates this fact. We
define a circuit composed of a set of modules such that all
module interface wires are connected to be a complete cir-

cuit. A well-connected circuit is a complete circuit that
has no combinational loops. This definition brings us to our
final property:

Property 3 (Circuit Well-Connectedness). A complete cir-

cuit is well-connected if and only if all from-port output wires
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in the circuit are safely from-port with respect to the to-port

input wires to which they are connected.

Proof. The forward implication is that in a complete, well-
connected circuit 𝐶 , all from-port output wires are safely
from-port. By definition, a well-connected circuit does not
contain any combinational loops. If there exists somemodule
𝑀1’s from-port output wire wout that is not safely from-

port, then by the definition of safely from-port (Defini-
tion 3.2) either:

1. Wire wout is not connected to any other wire. But this
contradicts the fact that the circuit must be complete.

2. Wire wout is connected to wire win of some module
𝑀2 and there exist wires𝑤1 ∈ input-ports(𝑀1,wout),
𝑤2 ∈ output-ports(𝑀2,win) such that𝑤2{𝐶𝑤1. By
the definition of{𝐶 this means that there is a combi-
national loop in the circuit. But this contradicts that
the circuit is well-connected.

Therefore by contradiction the forward implication holds.
The reverse implication is that if all from-port output wires
are safely from-port, then the complete circuit is well-
connected. Since the circuit is complete, every input and
output wire is connected to some output or input wire, re-
spectively. For a given connection, if either the output wire
is from-sync or the input wire is to-sync then they can-
not be part of a combinational loop. So the only case that
we need to worry about is if the output wire wout is from-

port and the input wire win is to-port. Assuming that wout

is safely from-port, this means that by Definition 3.2 it
must be true that wout and win are well-connected according
to Definition 3.1. This property directly implies that these
wires cannot be part of a combinational loop. Therefore the
forward direction holds. □

3.5 Putting It All Together

Given the definitions and properties stated above, we can
divide checking a circuit for well-connectedness into three
stages:

• Stage 1.At the time each module is designed, automat-
ically compute the sort of each input and output wire.
Annotate each wire with its sort and, for a from-port

or to-portwire, its input-port-set and output-port-set,
respectively.

• Stage 2. When modules are connected during circuit
design, any connections involving a from-sync or
to-sync wire can be marked as safe immediately.

• Stage 3. Either periodically during circuit construc-
tion (useful when using interactive HDLs with a tight
feedback loop) or only once when the circuit is com-
pleted: for each from-port output wire connected to
a to-port input wire, check whether the output wire
is safely from-port with respect to the input wire.

This process neatly encapsulates the necessary informa-
tion about the module’s internal details into its interface and

allows for checking well-connectedness in the final circuit
while treating each module as a opaque.

3.6 Comparison to BaseJump STL

We can relate the informal notions given by BaseJump STL
(described in Section 2) to our more precise definitions given
here and thereby pin down exactly where the BaseJump
STL notions become problematic. BaseJump STL says that
an endpoint is demanding if it needs the other endpoint’s
input signal (validin for the consumer endpoint, readyin for
the producer endpoint) before computing its own output
signal (readyout for the consumer endpoint, validout for the
producer endpoint) and is helpful otherwise.

Using our definitions, we can formulate these notions pre-
cisely. We are given a module 𝑀 with producer endpoint
(readyin, validout, dataout) and consumer endpoint
(readyout, validin, datain). The producer endpoint is help-
ful iff readyin ∉ input-ports(𝑀, validout), otherwise it
is demanding. This says nothing about the presence or
absence of 𝑀’s other inputs in input-ports(𝑀, validout),
meaning validout could be from-port and thus potentially
cause a loop due to other module connections. The consumer
endpoint ishelpful iff validin ∉ input-ports(𝑀, readyout),
otherwise it is demanding; again, this does not preclude
readyout from being from-port.

According to the BaseJump STL work, the only potentially
problematic connection is between two demanding end-
points; all other types of connections are safe while demand-

ing-demanding connections should be forbidden. However,
according to our analysis above this is not a sufficient condi-
tion for correctness. It is possible (as demonstrated in Sec-
tion 2) for a helpful-helpful connection to create a combi-
national loop; this is because the helpful and demanding

endpoint classifications focus only on direct connections
between two modules and do not consider the possibility of
combinational loops via other modules not directly involved
in the connection.

3.7 Extension to Synchronous Memory Reads

The basic set of domains described in Section 3.1 omits men-
tion of memories. Memories are a special case in digital
logic; their semantics partially depend upon whether they
are synchronous or asynchronous. Synchronous memories
are often preferable in order to be able to synthesize a design
into efficient hardware, but using them imposes additional
conditions on the design. For example, one class of synchro-
nous memories requires that the read operations are able
to start at the beginning of the clock cycle. What this often
means is that the designer must make sure that the read
address port, raddrin, is fed directly from a register.

Take as an example the module-memory interconnection
in Figure 8. At first glance, this condition requires that any
external module’s output wire wout connected to raddrin
be from-sync. However, this still doesn’t meet the required
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conditions for synchronousmemories; our definition of from-

sync allows combinational logic to exist between the source
register from which the from-sync data originates and its
destination. In order for the data on wout to be available im-
mediately at the beginning of the clock cycle, it must not go
through any combinational logic at all (since all gates have
propagation delay), and so we find that we must create a
from-sync subsort, which we’ll call from-sync-direct.

Figure 8. The read address line raddrin of certain synchro-
nous memories must be connected to from-sync-direct

wires like wout.

A from-sync-direct outputwirewout is simply onewhere
reachable(𝑀,wout) = ∅. By our definition of reachable in
Section 3.2, this means thatwout is connected only directly to
registers, with no intermediate combinational logic. In Figure
4, wire w1out could thus be labelled from-sync-direct and
qualify as being able to be connected to a synchronous mem-
ory’s input wires. Its data is available at the start of the clock
cycle because its signal doesn’t need to propagate through
any attached combinational logic. A from-sync wire that
isn’t from-sync-direct is said to be from-sync-indirect.

There are other forms of memories where synchronous re-
quirements are placed on certain outputs, rather than inputs.
In these memories, the designer must ensure that the dataout
wire is fed directly into a register. This naturally leads to
an input subsort for describing such conditions, which we
call to-sync-direct; a to-sync-direct input wire win is one
where reachable(𝑀,win) = ∅. A to-sync wire that isn’t
to-sync-direct is said to be to-sync-indirect.

By providing these additional sorts, designers can commu-
nicate the interface requirements of modules using synchro-
nous memories, making libraries of hardware components
more accessible and easier to use. Thus, this sort taxonomy,
now at for inputs: to-sync (with its subsorts to-sync-direct
and to-sync-indirect) and to-port; and for outputs: from-

sync (with its subsorts from-sync-direct and from-sync-

indirect) and from-port, has a wide range of applications
and can be potentially expanded even further.

4 Implementation of Modular
Well-Connectedness Checks

We augmented the PyRTL HDL [15] to implement light-
weight annotations and design-time checks according to the

formal properties that we have described of the original four
wire sorts (to-sync, to-port, from-sync, and from-port).
PyRTL does not natively support a module abstraction, so
we first modified the language by adding a Module class that
isolates a modular design and exposes an interface consisting
of input and output wires.3

Our formalism made two simplifying assumptions. First,
it assumed that all logic is contained inside modules. For
developer convenience, we eased this restriction to allow
for arbitrary logic to exist between modules. We tweaked
the TransitivelyAffects relationship ({𝐶 ) to account for com-
binational paths through this extra-modular logic. Second,
it treated all wires as one bit in width. At the HDL level,
it is much more convenient to group related one-bit wires,
especially input and output ports, into single 𝑛-bit wire vec-
tors. For native PyRTL designs (but not BLIF import), the
output-port-set or input-port-set of each port wire vector
becomes the union of the output-port-set or input-port-set
of its constituent wires; thus we are overly conservative be-
cause single-bit dependencies are not tracked, but maintain
soundness by continuing to be able to detect all combina-
tional loops.

The well-connectedness implementation itself consists of
(1) a sort inferencer that automatically computes the sorts
of a module’s input and output wires at module design time;
(2) lightweight syntactic annotations that allow a designer
to (optionally) specify what they believe the sorts should ac-
tually be; and (3) a whole-circuit checker that automatically
triggers when needed to verify that a circuit composed of
multiple modules is well-connected.
The computed sorts are then checked against any exist-

ing designer annotations to ensure that the computed sorts
match the designer’s expectations; any unascribed ports are
labeled with their computed sorts. We require sort ascrip-
tions, where the output-port-set or input-port-set are fully
specified by the user, for all the ports of opaque modules,
since there is no internal logic to use for calculating these
sorts. Once a module has its wire sorts, these sorts make it
quicker to determine intermodular connections because they
facilitate re-use: every instantiation of the same module in
the larger design reuses the same wire sort information.
An interesting question during circuit design, as mod-

ules are being composed, is when exactly to check well-
connectedness. We would like to highlight problems as early
as possible instead of waiting until the entire circuit is com-
plete. However, we also want to minimize the cost of con-
stantly checking well-connectedness during the design pro-
cess. As such, our tool can either check forwell-connectedness
after all modules have been connected or instead whenever
a newly formed connection between two modules meets the
following condition: the connection’s forward combinational

3Our PyRTL modifications and the complete implementation of our tool

are available at https://github.com/pllab/PyRTL/tree/pldi-2021.
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reachability set includes a to-port input, and its backward
combinational reachability set contains a from-port output.
This condition is cheap to track by saving and updating in-
formation about each wire’s reachability as wires are added
to the design, and it guarantees that (1) a check is never
done unless a problem could potentially be found; and (2) an
actual problem is found as soon as possible.

5 Evaluation

We evaluate our tool in five parts: (1) an application to a
number of SystemVerilog modules provided by the Base-
Jump STL; (2) an application to several components from
the OpenPiton Design Benchmark; (3) a case study applying
the tool to the design of a multithreaded RISC-V CPU; (4) a
comparison of our tool to standard cycle detection during
synthesis; and (5) a discussion of the scalability and asymp-
totic complexity of the tool.

5.1 BaseJump STL Modules

We begin with an evaluation of a number of the SystemVer-
ilog modules provided by the industrial-strength BaseJump
STL library. This evaluation serves as a baseline sanity check
allowing us to verify that we can successfully assign the
correct sorts to module interfaces.
We ran our annotation framework successfully on 144

unique modules from the BaseJump STL as found in the BSG
Micro Designs repository [36], a repository containing a
large number of BaseJump STL modules parameterized and
converted into Verilog. Each module was instantiated one
to four times to test various combinations of its parameters
(e.g. data bit width, address width, queue size, etc.), so that
we analyzed 533 modules in total. Since our technique is
currently only applicable to synchronous, single-clock de-
signs, we were unable to analyze 5 modules that relied on
asynchronous or multi-clock constructs.

We converted each top-level module and their submodules
into the flattened BLIF format[4] via Yosys version 0.9 and
imported the result into PyRTL. The average size of each
module in BLIF was 1.7 MB, with an average number of
primitive gates of 19,981, an average number of inputs and
outputs per module of 6, and an average time for inferring
all of the interface sorts for each module of 361 milliseconds.
We ran all of these experiments using PyRTL on a computer
with a 1.9 GHz Intel Xeon E5-2420 processor and 32 GB 1333
MT/s DDR3 memory.

A representative subset of these BaseJump STL modules is
shown in Table 1: a first-in first-out queue, a parallel-in serial-
out shift register, a serial-in parallel-out shift register, and
cache DMA. Information on the sizes, wire sort annotations,
and annotation time for all 533 modules is found in the
supplementary material.
We highlight in particular the parallel-in serial-out shift

register (PISO) as an interesting case. Three of its four inputs

are to-sync, while yumi_i is to-port (specifically, its output-
port-set contains the output ready_o). We can see the details
by looking at the logic for output ready_o:

ready_oout F (𝑠𝑡𝑎𝑡𝑒reg = stateRcv)∨

((𝑠𝑡𝑎𝑡𝑒reg = stateTsmt)∧

(𝑠ℎ𝑖 𝑓 𝑡𝐶𝑡𝑟reg = nSlots − 1) ∧ yumi_iin)

According to the BaseJump STL paper, the consumer end-
point of this module (to which ready_oout belongs) is help-
ful because ready_oout does not combinationally depend on
valid_iin (an input wire in the consumer endpoint). Thus,
according to them, this module can safely be connected to
any other module. However, our own analysis more precisely
shows that while it is true that ready_oout doesn’t depend on
other consumer endpoint wires, it does require other module
input (in particular yumi_iin, which is part of the producer
endpoint). This fact means that the PISO module connec-
tions may or may not be safe depending on the sorts of the
interfaces to which it is directly or transitively connected.
Notably, after personal correspondence in which we re-

ported the issue, the authors of the BaseJump STL PISO
module updated it so that, according to our terms, yumi_iin
is now to-sync and ready_oout is now from-sync.4 This
shows that designers care about the precise behavior of these
interfaces and that an analysis that annotates wire sorts and
verifies their interconnections is a useful thing to have.

5.2 OpenPiton Modules

We also used our analysis on a completely separate body of
work: the OpenPiton Design Benchmark (OPDB), based on
the OpenPiton manycore research platform [3, 39]. OPDB
is interesting because it provides modules of a variety of
scales andwith different configuration options pre-generated
per module. We were also interested in these OpenPiton
designs due to anecdotes from the developers of OpenPiton
related to issues they experienced with compositionality. In
one instance, developing a like-for-like replacement for an
existing component led to combinational loops that went
undetected until final integration and synthesis due to minor
mismatches in interfaces and test configurations. In another,
a hardware generator produced combinational loops for only
particular values of a parameter designed to change the size
of a module, and those loops would require the composition
of as many as seven modules to come into existence.

To process the OPDB designs, we followed the same Yosys
Verilog-to-BLIF synthesis step as with the BaseJump STL
designs, excluding some with asynchronous or multi-clock
constructs. Our selected OPDB designs include a floating-
point unit, network-on-chip router, and two caches, among
others. Table 2 shows the OPDB designs we selected, their
sizes in number of primitive gates, the time taken to infer

4See https://github.com/bespoke-silicon-group/basejump_stl/commit/

67830f05ffce1333c7b790600530da0681af74fe
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Table 1. Wire sorts of module ports for a subset of BaseJump STL; TS = to-sync, TP = to-port, FS = from-sync, FP =
from-port. Every module also has a reset input wire whose sort is to-sync. The time listed is cumulative time to annotate
all the wire sorts.

Module
Prim.

Gates

Time

(s)

Inputs Outputs

Wire Name Sort Output Port Set Wire Name Sort Input Port Set

First-In

First-Out

Queue

148,272 2.669

data_i TS ∅ data_o FS ∅

yumi_i TS ∅ ready_o FS ∅

v_i TS ∅ v_o FS ∅

Parallel-In

Serial-Out

Shift Reg.

53,637 0.606

valid_i TS ∅ valid_o FS ∅

data_i TS ∅ data_o FS ∅

yumi_i TP {ready_o} ready_o FP {yumi_i}

Serial-In

Parallel-

Out SR

1,617,698 18.752

yumi_cnt_i TS ∅ ready_o FS ∅

valid_i TP {valid_o} valid_o FP {valid_i}

data_i TP {data_o} data_o FP {data_i}

Cache

DMA
4,440 0.051

data_mem_data_i TS ∅ data_mem_data_o FS ∅

dma_data_i TS ∅ dma_data_o FS ∅

dma_data_v_i TS ∅ dma_data_v_o FS ∅

dma_data_yumi_i TS ∅ dma_data_ready_o FS ∅

dma_pkt_yumi_i TP {done_o} dma_pkt_v_o FP {dma_cmd_i}

dma_way_i TP {data_mem_w_mask_o} data_mem_addr_o FP {dma_addr_i}

dma_addr_i TP {data_mem_addr_o, data_mem_v_o FP {dma_cmd_i}

dma_pkt_o} data_mem_w_mask_o FP {dma_way_i}

dma_cmd_i TP {done_o, dma_pkt_o, dma_pkt_o FP {dma_addr_i,

dma_pkt_v_o, dma_cmd_i}

data_mem_v_o} done_o FP {dma_cmd_i,

dma_pkt_yumi_i}

data_mem_w_o FS ∅

dma_evict_o FS ∅

snoop_word_o FS ∅

Table 2. Size (in primitive gates), wire sort inference time
(in seconds), and number of IO ports of 17 OPDB modules.

Module Prim. Gates Time (s) Ports

dynamic_node 29,918 0.759 35

fpu 168,525 1.456 16

ifu_esl 15,602 1.362 40

ifu_esl_counter 310 0.001 5

ifu_esl_fsm 2,299 0.040 34

ifu_esl_htsm 524 0.012 30

ifu_esl_lfsr 213 0.001 6

ifu_esl_rtsm 170 0.005 24

ifu_esl_shiftreg 208 0.001 4

ifu_esl_stsm 267 0.016 26

l2 1,088,384 15.128 16

l15 1,518,073 30.176 71

pico 36,479 0.245 24

sparc_ffu 104,966 0.723 77

sparc_mul 20,702 0.260 7

space_exu 320,397 10.203 132

sparc_tlu 650,364 8.753 214

the wire sorts of the design, and the number of input/output
ports. Of the 17 designs we processed, the average number

of gates was 232,788, while the smallest (ifu_esl_rtsm) had
just 170 gates and the largest (l15) had more than 1.5 million
gates. The designs had an average of 44 ports with the fewest
ports (ifu_esl_stsm) being just 4, while the design with the
most (sparc_tlu) had 214. The larger scale of these designs
also skews to a longer average wire sort inference time, at
4.067 seconds, with a minimum of 0.001s and a maximum
of 30.176s. We describe the asymptotic complexity of this
operation in Section 5.5.

5.3 RISC-V CPU

For a more holistic case study, we implemented a multi-
threaded single-cycle RISC-V [27, 41] CPU (RV32I base inte-
ger instruction set) in PyRTL. The CPU consists of 11 mod-
ules in total; the total number of primitive gates for the entire
design, configured for five threads and five pipeline stages,
is 229,011 gates. Our tool spent an average of 13.5 millisec-
onds on each module inferring its interface sorts; it took on
average 162.7 milliseconds to determine all of the sorts, with
a lower bound of 148.9 milliseconds and an upper bound of
194.2 milliseconds, at a rate of 298 nanoseconds per primitive
gate. Once all the modules were connected, it was able to cor-
rectly check all the inter-module connections in an average
of 67.1 milliseconds, with a lower bound of 62.5 milliseconds
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Table 3. A comparison of cycle detection during synthesis (Yosys) versus our tool using wire sorts on large OPDB designs.
Each unique module type only needs to be analyzed once; additional (non-unique) instantiations reuse the calculated sorts.
The number of primitive gate differs from Table 2 because these are unflattened, and thus unoptimized, designs.

Module
Prim. gates

(hier. BLIF)

Cycle det. time (s)
Speedup

Sort infer.

time (s)

Submodules

Yosys Ours Total Unique

fpu 189,452 46.42 3.11 14.92x 0.845 3530 118

sparc_ffu 105,688 11.30 1.00 11.30x 0.397 208 51

sparc_exu 331,452 22.81 8.65 2.63x 0.989 737 92

sparc_tlu 761,538 108.54 5.82 18.64x 0.813 777 128

l2 1,176,219 361.04 10.64 33.93x 13.80 157 45

l15 1,549,475 643.45 20.81 30.92x 7.86 68 26

and an upper bound of 77.3 milliseconds. Information on
the sizes, wire sort annotations, and annotation times for
the RISC-V submodules can be found in the supplementary
material.

5.4 Comparison to Loop Detection During Synthesis

In our final analysis, we compared the efficiency of doing
cycle detection at the HDL level via wire sorts versus at the
netlist level during synthesis. Finding broken designs in the
wild is difficult because most designers don’t publish broken
designs. So instead, we altered the OPDB Verilog designs
slightly by introducing multi-module loops, importing the
largest of them in their hierarchical BLIF format into PyRTL
where our intermodular analysis is done. We then timed how
long (1) Yosys takes to find the cycle during synthesis, (2)
our tool takes to determine all interface sorts, and (3) our
tool takes to check for intermodular loops given these sorts.
We found that Yosys took longer to synthesize and find loops
than our tool. It was also not straightforward to get Yosys to
tell us these loops exist: depending on the options given, it
would optimize them out or convert them to something else
entirely without warning. Our results are found Table 3.

In actual use, we expect the user to write their designs in
a modular fashion in a high-level HDL that can be analysed
directly to begin with and to provide wire sort ascriptions
if wanted. This experiment favored synthesis over our tech-
nique because it relied on importing a BLIF file, which has
a few downsides. The Verilog-to-BLIF process converts 𝑁 -
bit ports into 𝑁 1-bit ports, meaning the number of ports
increased by a factor equal to the average port bitwidth. The
conversion also creates a module instance for each unique set
of parameters used; since BLIF doesn’t offer information that
a module instantiation differs from another only by some
parameter, those count as additional unique modules whose
sorts must be calculated.
Despite this, annotating all modules with their I/O sorts

was relatively quick, and detecting loops via intermodular
connections using these sorts was 2.6ś33.9x faster than try-
ing to find them during synthesis at the pure netlist level. We
expect that by analyzing the design in its original form (e.g.

Verilog or PyRTL), where the wires stay bundled together
and parameterized module instances can be abstracted over,
this speedup would increase significantly. This is exemplified
by our RISC-V case study mentioned in Section 5.3, which
was written entirely in PyRTL.

5.5 Complexity and Scalability

We describe the asymptotic complexity of the two analysis
phases in order to demonstrate their scalability.

5.5.1 Module Wire Sort Inference. Sort inference takes
place once per module definition. For a given module𝑀 =

(−−→win,
−−−→wout,

−−→
𝑛𝑒𝑡), we must compute the transitive closure of

combinationally reachable output wires for each win ∈
−−→win.

Thus the total complexity of computing the sorts for all

input wire sorts is O(| −−→win | · | edges |), where edges =
⋃

𝑛𝑒𝑡 ∈𝑀.nets{
−→𝑤𝜎 | (−→𝑤𝜎 ,𝑤𝜎 , op) = 𝑛𝑒𝑡} ∪𝑀.outputs. Since the

to-port/from-port relationship is symmetric, the wire sorts
for outputs can be computed using the previously computed
input wire sorts without traversing the module’s internal
wires again.

5.5.2 Circuit Well-Connectedness. The phase to check
circuit well-connectedness uses the wire sorts computed
by the module wire sort inference, and it operates only on
the module interfaces without caring how large or complex
any individual module might be. It only needs to be run
once, after the circuit is complete. The algorithm iterates
over each pair of inter-module input-output connections
checking them against the TransitivelyAffects relationship
({𝐶 ).

Since each input port is connected to only one incoming
output wire from another module, the number of connec-
tions is equal to the total number of input ports across the
circuit. Given a circuit 𝐶 and arbitrary wires wout, win in
the circuit, the worst-case scenario is when the path from
wout to win traces through every inter-module connection
before finally reaching the combinational loop. Thus, the

186



Wire Sorts: A Language Abstraction for Safe Hardware Composition PLDI ’21, June 20ś25, 2021, Virtual, Canada

Table 4. The number of annotations per sort. TS = To-Sync,
TP = To-Port, FS = From-Sync, FP = From-Port.

Source Modules
Inputs Outputs

TS TP FS FP

BaseJump STL 144 233 211 178 197

OpenPiton DB 17 347 113 245 56

RISC-V 11 14 33 3 33

Total 172 594 357 426 286

TransitivelyAffects computation has a worst-case complex-
ity of O(| 𝐶.𝑐𝑜𝑛𝑛𝑠 |). Since we do this check for each con-
nection pair in 𝐶.𝑐𝑜𝑛𝑛𝑠 , the total worst-case complexity is
O(| 𝐶.𝑐𝑜𝑛𝑛𝑠 |2).

5.5.3 Distribution ofWire Sorts. We found that sort an-
notations that our tool assigned to the module ports were
widely distributed, as shown in Table 4. Across all 172 mod-
ules, to-sync inputs make up 62.5% of module inputs, com-
pared to 37.5% for to-port inputs. from-sync outputs make
up 59.8% of module outputs, compared to 40.2% for from-

port outputs.
The foremost goal of this work was to reduce the number

of łlate surprises” in the design process. In these designs,
38.7% of the ports raise the possibility of a łlate surprise”
loops because they are to-port or from-port. For the re-
maining 61.3%, our technique has the additional advantage
of making the checking process faster, by eliminating in-
dividual wires, or in the case of modules with entirely to-

sync/from-sync IO, entire modules that need to be included
in the cycle detection analysis.

6 Conclusion

We have presented an approach to creating hardware mod-
ules in isolation while tracking enough information to make
checking their well-connectedness in an entire design feasi-
ble and user-friendly. BaseJump STL’s informal approach of
commenting ready-valid endpoints as helpful or demand-

ing is a step in the right direction at classifying modules
with information to help in connecting them at circuit de-
sign time in a plug-and-play fashion, but as we show it falls
short in being able to prevent combinational loops.

Our solution is to provide wire-level information via a tax-
onomy of sorts: to-sync, to-port, from-sync, and from-

port, allowing for modules to be written in isolation ef-
fectively and still safely connected without knowing their
internals. We implemented our approach in a hardware de-
scription language and analyzed real-world designs (Base-
Jump STL and the OpenPiton Design Benchmark) as well as
a multithreaded RISC-V CPU implementation, showing that
our approach is feasible, effective, and efficient.
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