
Automated Data Structure Generation:
Refuting Common Wisdom

Kyle Dewey Lawton Nichols Ben Hardekopf
University of California, Santa Barbara

{kyledewey, lawtonnichols, benh}@cs.ucsb.edu

Abstract—Common wisdom in the automated data structure
generation community states that declarative techniques have
better usability than imperative techniques, while imperative
techniques have better performance. We show that this reasoning
is fundamentally flawed: if we go to the declarative limit and
employ constraint logic programming (CLP), the CLP data
structure generation has orders of magnitude better performance
than comparable imperative techniques. Conversely, we observe
and argue that when it comes to realistically complex data
structures and properties, the CLP specifications become more
obscure, indirect, and difficult to implement and understand
than their imperative counterparts. We empirically evaluate three
competing generation techniques, CLP, Korat, and UDITA, to
validate these observations on more complex and interesting data
structures than any prior work in this area. We explain why
these observations are true, and discuss possible techniques for
attaining the best of both worlds.

I. INTRODUCTION

Automated data structure generation helps to test code that
interacts with or operates on data structures. Techniques for
automated data structure generation have been studied for over
a decade, from TestEra [1] to Korat [2], ASTGen [3], and
UDITA [4]. TestEra was based on the declarative language Al-
loy [5] (essentially an interface to a lower-level SAT solver); its
declarative nature made simple data structures easy to specify,
but its performance was disappointing. Succeeding techniques
are based on the imperative language Java, explicitly in order
to gain better performance. These latter techniques also extend
Java semantics in various ways to include declarative features
such as nondeterminism, explicitly in order to preserve the
usability1 benefits of declarative languages. This progression
of research has led to the common wisdom in the automated
generation community that imperative implies better perfor-
mance and that declarative implies better usability.2

In this paper, we demonstrate that the common wisdom is
flawed at best and backwards at worst—we show that declar-
ative techniques can be much faster than imperative ones,
and argue that imperative techniques can have much better
usability than declarative ones. We arrive at this conclusion
in two steps. Recall that the current state of the art (Korat

This work was supported by NSF CCF-1319060.
1“Usability” refers to the ease of use and learnability of a human-made

object, in this case how easily data structures can be specified.
2The exact meanings of the terms “imperative” and “declarative” are a

constant source of debate, though we define “imperative” to mean the presence
of mutable state and loops, and “declarative” to mean the lack of these
features.

and UDITA) modify the Java language semantics to include
various declarative features. We argue first that extrapolating
these features to their logical conclusion leads us to constraint
logic programming (CLP), which can be used to subsume
and extend the current state of the art in data structure
generation. We show that an off-the-shelf CLP engine allows
for declarative specification and generation of data structures
that easily outperforms existing techniques such as Korat and
UDITA. CLP is an inherently declarative approach, and thus
we show that declarative techniques have superior performance
to imperative ones, and we explain why this fact is true.

The current state of the art data structure generation tech-
niques have been evaluated on relatively simple data struc-
tures such as sorted linked lists and red-black trees. For
these data structures the CLP specification is concise and
elegant, being at least on par with specifications in Korat
and UDITA in terms of usability. Thus, when looking at
the kinds of data structures that have historically been used
to evaluate automated generation, CLP is the clear winner.
However, our work goes beyond these simple data structures
to encompass more complex structures and properties. For
example, we specify and generate red-black trees with the
additional property that inserting a given element guarantees
the tree must be rebalanced. This property takes into account
not just the invariants that define the data structure, but also
models the imperative operations on that data structure (i.e.,
insertion and rebalancing). We also specify and generate more
complex data structures such as skip lists, splay trees, and
B-trees; these structures have cycles, probabilistic properties,
and other features that make them more challenging than the
simpler structures that previous work has evaluated. Based on
our subjective experience, we observe that for these kinds
of structures and properties the CLP specifications become
complex and cumbersome; they are no longer concise and
elegant and closely follow the definition of the data structure,
but instead are obscure and indirect and difficult to define,
understand, and debug. We support this observation via metrics
which act as proxies for complexity, and argue why this
declarative difficulty arises.

These two insights lead us to the conclusion stated earlier:
generating data structures using CLP (an extreme point on
the declarative side of the declarative/imperative spectrum) is
much faster than using techniques such as Korat and UDITA
that are based on Java and that use its imperative features;
however in our experience Korat and UDITA are generally

more usable than CLP for specifying complex data structures
and properties. This insight, and the reasoning behind it,
leads to some interesting ideas about future work that may
eventually allow us to combine the benefits of both approaches.
In summary, the contributions of this paper are:

• We describe the progression of past research on auto-
mated data structure generation and its tension between
declarative and imperative techniques. (Section II)

• We argue that the logical extrapolation of the trends con-
tained in that research is constraint logic programming,
and explore why CLP can be a good fit for this problem
for simple data structures. (Section III)

• We examine more complex properties that data structures
might have and explain why CLP can be lacking in
terms of usability when dealing with these properties.
(Section IV)

• We describe seven specific data structures that exhibit
a range of the above properties: three structures that
were evaluated in previous work and four that have never
been automatically generated before this work. Also, we
describe for each data structure an additional property that
yields a particularly interesting part of the search space
for that data structure. (Section V)

• We specify and generate all of the data structures de-
scribed above using CLP, Korat, and UDITA, objectively
comparing these approaches in terms of performance
and subjectively comparing them in terms of usability.
(Section VI)

• We use our insights into the advantages and disadvantages
of the different generation strategies to describe some
possible interesting avenues for future work in combining
their benefits. (Section VII)

II. RELATED WORK

We focus on general black-box data structure generation
techniques, as opposed to more specialized white-box tech-
niques (e.g., [6], [7], [8], [9]). We observe that prior work
in the space of black-box data structure generation has been
moving between the imperative and declarative realms for over
a decade in an attempt to find a “sweet spot” that makes
the proper tradeoffs. We present the relevant prior work in
chronological order in order to make this phenomenon clear.

TestEra [1] is the starting point for related work and
represents a highly declarative mindset. TestEra allows users to
specify data structures (and operations on said data structures)
via invariants encoded in Alloy [5], a specification language
intended for bounded model checking. Alloy translates these
specifications into a SAT instance which is ultimately passed
to a SAT solver. With TestEra, satisfying SAT assignments
correspond to data structures which are valid according to the
provided specification.

While TestEra allows for concise and precise definitions,
it has two major drawbacks: (1) it is disconnected from
downstream testing; and (2) it has poor and unpredictable
performance. “Disconnected” means that the data structures
for automated testing are specified and generated in a language

which is entirely separate from what is actually being tested.
That is, while we may be interested in testing a red-black
tree implementation in Java, we must specify it in Alloy
first and then translate the resulting structure into a Java
datatype. In terms of performance, SAT is an NP-complete
problem and SAT solvers are ill-suited for generating many
satisfying solutions, as opposed to a single satisfying solution.
In addition, it can be challenging to diagnose performance
issues surrounding a SAT solver [10].

A notable step after TestEra is Korat [2], which addresses
the disconnect and performance issues with TestEra. Korat
allows users to write predicates directly in Java, represented as
pure functions that take a data structure and return a boolean
value; these functions are written to return true iff the pro-
vided structure meets the necessary invariants. Korat uses these
predicates effectively in reverse to generate interesting data
structures. The predicates themselves use imperative features
such as loops and assignment, but the overall specification
strategy (i.e., providing predicates that accept interesting struc-
tures and using those predicates to generate said structures)
is declarative in nature. Assuming the downstream program
under test is in Java, Korat’s strategy allows for data structures
to be passed directly to the test harness without any sort of
translation. Additionally, Korat sees much better performance
than TestEra does, with experiments typically running several
orders of magnitude faster.

While Korat addresses the major drawbacks of TestEra, a
slew of problems remain which were inherited from TestEra.
Most important of these to our discussion is the fact that
Korat’s search strategy is fixed and outside of control of the
user. This means that users cannot adjust the order in which
data structures are enumerated, which is a desirable property
to have [11].

In response specifically to the search strategy issues, AST-
Gen [3] was developed. ASTGen is aimed towards data
structure generation problems which are best phrased in terms
of how construction should occur, as opposed to what is con-
sidered interesting. This is a radical departure from prior work,
since it fundamentally promotes an imperative approach to
data structure generation as opposed to a declarative approach.
The authors argue that certain problems, such as enumerating
grammars, are well-suited to this approach. Most importantly,
the authors make strong claims about performance, best illus-
trated through the following quote: “The imperative approach
makes the generation faster since no search is necessary.”

To allow for imperative generation, ASTGen offers an
iterator-like interface in Java, where the key methods are:

• hasNext: Does the generator have more elements.
• next: Get the next available element.
• reset: Reset the generator to the beginning.

Via the above interface, users can directly generate data of
interest with explicit control over the order in which such data
is produced. The downside of this interface is that it makes
operations painfully explicit, and generating any sort of nested
data structure requires carefully constructing multiple iterator
classes and passing instances along to where they are needed.

While ASTGen theoretically overcomes the issues surround-
ing Korat’s search strategy, the authors do not demonstrate
any sort of utility for this ability. More importantly, while
performance is frequently used to justify the clear loss of us-
ability, ASTGen is never evaluated against Korat (or any other
prior techniques). As such, ASTGen’s apparent performance
benefits are never demonstrated, so it is unclear if they exist
at all.

In response to the severe loss of usability in ASTGen,
UDITA [4] was developed, which attempts to recover some
of the usability of Korat in an ASTGen-style framework. A
key observation made in the UDITA work is that the sort
of imperative generators used in ASTGen can be seen as a
means of nondeterministically enumerating a stream, done in
a very explicit way. Building from this insight, the authors
simplify the generator interface in ASTGen down to a single
method generate(), which returns a single data structure
in a nondeterministic fashion. This is made possible by exe-
cuting the generators on Java PathFinder [12], a special Java
Virtual Machine which imparts a nondeterministic semantics
to Java. An additional benefit of using Java PathFinder is that
users can take advantage of assume statements (pedantically,
ignoreIf statements), which semantically allow execution
to proceed only if a given Boolean condition evaluates to
true. Via assume, programmers can generate data struc-
tures of interest given only a predicate that tests validity, as
with Korat. In this way, UDITA harmonizes the imperative
generators of ASTGen with the declarative style of Korat.

In addition to its usability benefits, UDITA saw performance
benefits as well. UDITA was around 3× faster than ASTGen
on large benchmarks, though around 30× slower on smaller
benchmarks that ASTGen completed in under 3 seconds.
This performance benefit was unexpected considering the fact
that UDITA diverges from the imperative model, which was
assumed in ASTGen to be unquestionably high-performance.
Our own evaluation in Section VI shows that UDITA is
substantially slower than Korat, and thus transitively this
means ASTGen is even slower still; this observation implies
that much the the work done after Korat has actually regressed
the state of the art.

While UDITA addresses the sort of usability issues seen in
ASTGen, and even sees performance improvements, this all
comes at a substantial cost: significantly increased complexity,
both from the user’s and the implementer’s standpoint. Users
must understand both ASTGen and Java PathFinder just to
pick up UDITA, and they must also be comfortable with
nondeterministic execution. As for the implementation, in
addition to the use of Java PathFinder, the authors found it
necessary to implement some key optimizations such as lazy
instantiation of data structures in order to make generation
feasible. For these reasons, UDITA is is unappealing for data
structure generation; there are simply too many moving parts,
and the barrier to entry is high.

The most recent related work is Senni et al. [13], who
propose using CLP as an alternative to Korat and perform a
preliminary evaluation that shows CLP’s promise. This work

is not in the mainstream, but it anticipates our argument for
CLP to a certain extent. However, Senni et al. are primarily
interested in research on source-to-source Prolog optimiza-
tions rather than examining CLP for automated data structure
generation. Thus, their paper does not attempt to explore the
connections between prior work (such as Korat and UDITA)
and CLP, it does not fully explore the utility of CLP and its
capabilities, and it leaves a number of issues unaddressed that
previous work has shown are important. First, they do not
investigate CLP’s ability to customize search strategies, which
was a major impetus for ASTGen and which is a strength
of CLP that Senni et al. do not exploit at all. Second, they
trivialize the problem of being disconnected from downstream
testing (something that CLP shares with TestEra), which was
a major impetus for Korat. Finally, Senni et al. only evaluate
a few low-complexity data structures with small bounds, all
of which were seen in prior work; these structures do little
to fully showcase and exercise the abilities of CLP. Because
they did not push the abilities of CLP, they did not observe any
of the shortcomings of CLP that we enumerate in this paper
and do not have our central insight that refutes the common
wisdom about data structure generation.

III. ADVANTAGE OF CLP: PERFORMANCE

Constraint logic programming (CLP) languages have fea-
tures such as built-in nondeterministic search, value unifica-
tion, and arithmetic constraint solvers. We argue that not only
are these features useful for data structure generation, but that
many of the features in prior work such as Korat, ASTGen,
and UDITA are ad-hoc approximations of a subset of these
features. Because CLP engines have been heavily optimized
over decades to make these features efficient (e.g., [14], [15],
[16], [17]), CLP has a natural performance advantage over
the prior work. In addition, the prior work requires extensive
changes and/or additions to the Java semantics, making their
implementation complex; CLP can take advantage of off-the-
shelf engines without any modification.

As an example of how CLP can be used for data structure
generation, consider a sorted linked list. Here is the CLP pro-
gram that can generate an infinite number of such structures:

sorted([]).
sorted([_]).
sorted([A,B|Rest]) :- A #=< B, sorted([B|Rest]).
:- sorted(L), write(L), fail.

This example uses standard Prolog syntax, where clauses
are delimited with periods, :- can be understood as reverse
implication, comma stands for logical conjunction, and labels
starting with capital letters are logical variables. There are
three clauses followed by a query; the first clause states that
an empty list is a sorted list; the second states that a single-
element list is a sorted list; the third states that a multi-element
list is sorted if the first two elements in are ascending order and
the rest of the list is sorted. Execution of this program starts
at the query in the last line. The semantics of CLP dictate
that the expression sorted(L) will find some structure that
satisfies the predicate sorted and bind it to the variable L

using unification. It will then write that structure to output
and finally fail. Failure automatically triggers backtracking
for nondeterministic search, and so the engine will backtrack
to the sorted(L) expression and find a different satisfying
structure, bind it to L, write it to output, and fail again. This
process will continue indefinitely, outputting an infinite stream
of satisfying structures.

We now go over the various features of CLP that are useful
for data structure generation and compare them with features
that are present in prior work.

Nondeterministic Search. From a high level, all prior work
can be seen as techniques to nondeterministically generate data
structures of interest in a given space. In practice, they all em-
ploy various form of backtracking algorithms. In TestEra [1],
ultimately the nondeterministic generation is done by SAT
solvers, which use backtracking algorithms for search [10].
Unlike CLP, however, traditional SAT solvers (e.g, those
described in [10]) are ill-suited for generating many satisfy-
ing solutions, necessitating modifications to the core solving
algorithm for the sake of efficiency [18], [19]. In Korat [2] a
backtracking algorithm is added on top of the JVM and used
to search the space of all structures to find ones that match a
predicate defined by the user. UDITA [4] actually modifies
the semantics of Java using Java PathFinder [12], which
uses backtracking to make Java execution nondeterministic.
These techniques all build nondeterministic search into the
infrastructure, hiding it from the user; ASTGen [3], in contrast,
forces the user to explicitly encode the nondeterministic search
into the specification of the data structure being generated.

Nondeterministic execution is a core feature of CLP seman-
tics, and has been discussed in the literature since very early
on [20]. As such, there have been literally decades of work on
making this feature efficient in CLP engines. The declarative
nature of CLP (i.e., without assignments or mutation) helps to
make these engines as efficient as they are; nondeterminism in
an imperative setting as in the prior work is both less efficient
and more complex.

Search Strategy Control. All prior work has employed
bounded-exhaustive generation, i.e., defining a finite space and
generating all structures within that space. While bounded-
exhaustive search has merit [21], [22], there are other search
strategies that can be useful. Random search, iterative deepen-
ing, and various hybrid approaches have been used in the past
to good effect for other types of automated generation [11],
[23]. As such, restricting search to a single strategy is overly
limiting.

ASTGen and UDITA allow for some coarse-grained con-
trol over the order of data structure generation, but CLP
can easily exceed this low bar. CLP naturally employs a
depth-first search strategy, and the order in which structures
are generated can be adjusted by modifying the order of
clause definitions. Bounded-exhaustive search can be achieved
by common built-in routines such as SWI-Prolog’s [24]
call_with_depth_limit/3 function, which adds a

user-defined recursion bound to the search. Random test-
ing is possible again via common built-in routines such as
maybe(P), where 1 - P is the probability that the maybe
expression will fail and trigger backtracking. All of these
strategies are composable with each other; for example, we
can easily define an iteratively deepened random search within
some maximum bound. This ability to vary the search strategy
with such ease is a major advantage of CLP for data structure
generation compared to related work.

Equality Constraint Propagation. Senni et al. [13] observe
that UDITA’s [4] lazy data structure instantiation optimization
“can be seen as a particular CP (constraint propagation)
solution strategy”. We observe that this UDITA optimization in
fact behaves just like the logical variables available in typical
CLP engines, which allow for the propagation of equality
constraints. Semantically, logical variables start in a special
uninstantiated state, wherein the variable has no specific
value. Uninstantiated variables can be aliased with each other,
essentially putting variables into the same equivalence class.
Logical variables can later become instantiated with particular
values, and all aliased variables will automatically have that
same value. To better illustrate this phenomenon, consider
the following code: X = Y, Y = 1. This code aliases the
logical variables X and Y with the expression X = Y, then
sets both of them to the value 1 with the expression Y = 1.
This behavior bears striking similarity to the lazy instantiation
optimization in UDITA, which: (1) only instantiates variables
when operations specific to a given data structure are per-
formed on them, and (2) allows for uninstantiated variables to
be aliased. In this way, UDITA is attempting to emulate the
logical variables already available in CLP engines, though in
an ad-hoc manner.

Disequality Constraint Propagation. In Korat [2], blind
search is avoided by observing what sort of sub-structure
caused a data structure to be rejected by the user-defined
predicate. This information is retained in a way that prevents
further data structures with identical sub-structure from being
generated. We observe that, in effect, this strategy allows
Korat to propagate disequality constraints, which prevent the
generation of invalid sub-structures. In UDITA [4], certain op-
timizations related to isomorphism-breaking are implemented
in a manner which is similar to disequality constraint prop-
agation. This observation is made directly by the authors in
demonstrating the correctness of the details of their generation
algorithm.

While disequality constraints are somewhat non-standard in
CLP languages, it is still compatible with CLP [25]. We do
not make use of this fact in our evaluation, but our results
show that CLP’s standard equality constraints significantly
outperform Korat’s disequality constraints.

Arithmetic Constraint Propagation. The hallmark of CLP
engines is the ability to reason about symbolic arithmetic via
high-performance arithmetic constraint solvers. While all of
the prior work allows for generation of data structures with

arithmetic invariants, with the exception of Senni et al. [13]
this capability is handled via a generate-and-filter approach.
That is, instead of asking a constraint solver to deliver numbers
which satisfy some given arithmetic constaints, one must
instead try all numbers in a range and filter out those which
did not satisfy applicable arithmetic invariants. Not only is this
inefficient, it forces the data structure generator to reason about
data structure shape and contents simultaneously, which can be
problematic. For example, consider the problem of generating
sorted lists of length 0 to N . In general, there are only N +1
unique list shapes in this space, though a potentially infinite
number of list structures when content is taken into account. If
the tester desires to test only structures with particular shapes,
without regard to contents, the space is quite small. However,
the need for contents can blow up the search space in a
completely uninteresting direction. With CLP, it is possible to
reason about shape and contents independently and to request
only a single satisfying solution for a list of any given length.
With the prior techniques, it would be necessary to tweak
various bounds in an ad-hoc manner just to get a single
solution, and this sort of tweaking does not scale to arbitrary
data structures.

IV. DISADVANTAGE OF CLP: USABILITY

For simple data structures such as singly-linked lists and
binary search trees, CLP can specify the appropriate structure
invariants simply and concisely. In fact, the specifications tend
to mirror the invariants closely in a very elegant way, as
with the sorted list example in Section III. The prior work
in data structure generation has only looked at these sorts of
simple structures, and thus CLP seems like a clear winner for
both performance and usability. However, when we extend our
evaluation to more complex structures and properties, we see
that while CLP still has much better performance than prior
work, its usability suffers in manner that has not been noted
before in the literature. We elaborate on these issues below.

Cycles and Node Sharing. Consider the problem of gener-
ating a tree data structure with parent pointers, imparting
a type of cycle in the data structure. Such cyclical structures
cannot be directly specified in CLP. The problem is that the
fundamental unit of data structure creation in CLP (known
simply as a structure) does not permit cycles. The solution
is to employ indirection, e.g., to label nodes with identifiers
and maintain a mapping from identifiers to nodes, and to use
those identifiers to describe the data structure’s shape rather
than the actual nodes themselves. This strategy adds additional
complexity to the specification and obscures the connection to
the data structure invariants being specified. If any part of the
structure may contain a cycle, then indirection must be used
for the entire data structure specification.

To illustrate this problem, consider the simple update of a
parent pointer. Ideally, to update node n1’s parent to be
node n2 we need only write n1.parent := n2, which
corresponds closely to the expected implementation. However,

with CLP, we instead need to write something similar to the
following (in pseudocode):

removeEdgesAnnotatedWith(
edges, getNode(nodes, "n1"), "parent"),

addEdgeAnnotatedWith(
edges, getNode(nodes, "n1"),
getNode(nodes, "n2"), "parent").

where getNode, removeEdgeAnnotatedWith, and
addEdgeAnnotatedWith perform map lookups and up-
dates to observe and change the underlying representation of
the graph. This style is clearly much more verbose than the
original, making CLP a poor choice for the representation of
cyclical data structures.

A similar problem holds for data structures that are DAG-
like, i.e., where a single sub-structure may be referenced
via multiple paths in the data structure. CLP naturally tends
to divide its generation into independent sub-structures in a
bottom-up manner. CLP will recursively build a series of
independent sub-structures, then bind them together into the
overall structure. This strategy does not work if those sub-
structures are not independent, e.g., if they need to all refer
to the same elements. In this case, the CLP specification must
explicitly build the to-be-shared elements and explicitly pass
them down through all of the recursive calls so that each
sub-structure will be referencing the same elements. Again,
this adds complexity and obscures the connection to the data
structure invariants being specified.

Imperative Operations. CLP does not offer imperative-style
for and while loops, which is inconvenient when it comes
to representing imperative operations which use these features.
More importantly, while most CLP engines do allow for
limited forms of imperative reassignment, these operations
behave in a manner which is incompatible with data structure
generation. That is, while these operations can be easily used
to verify if a given data structure satisfies a property, they
cannot be used to generate such satisfying data structures.
Attempts to do so will silently produce incorrect results or
otherwise bizarre behavior, ultimately because these operations
break the otherwise logical semantic model of CLP. This issue
forces the user to rewrite such operations in a functional
manner, often using a store-passing style [26] that adds yet
another layer of indirection. This extra indirection is fraught
with the same sort of issues as described previously with
cycles, and is highly undesirable from a usability standpoint.

The need for data structure specifications that model im-
perative operations is novel to this work, and it is a direct
consequence of our modeling of advanced properties on com-
plex data structures.

Metaprogramming. Most CLP engines support metaprogram-
ming through the call instruction, which structure values to
behave as calls to clauses (i.e., code). In many ways, call is
comparable to the notorious eval construct in languages like
JavaScript [27], as it fundamentally allows for dynamically-
generated code to be executed. Metaprogramming can be

used to parameterize computations and minimize redundant
code, which we have found very useful in specifying the data
structures and properties described in Section V. However,
it is an error-prone technique with substantial performance
drawbacks. In fact, because of performance concerns it is com-
mon practice in the CLP community to write macros which
expand code using metaprogramming into code that does not
use metaprogramming, which imparts complexity [28].

In general, it is desirable to avoid metaprogramming both
from a correctness and performance perspective, but we have
found in our own specifications that it is almost impossible
to avoid metaprogramming without significantly bloating the
specifications. We have thus reluctantly come to the conclusion
that metaprogramming is an unfortunate must-have.

Downstream Testing. With CLP, assuming the downstream
code we want to test is not itself in CLP, there is a disconnect
between the generated structures and the appropriate datatype
in the language of the application being tested. This means
that some sort of translation layer between the data structures
in CLP and the data structures in the system under test must
be in place, which adds complexity and could potentially harm
the performance gains afforded by CLP. This issue was one of
the motivating factors behind Korat [2], and is of importance
for any practical data structure generation technique.

V. DATA STRUCTURES AND PROPERTIES

In this section we describe the seven data structures on
which we evaluate the competing data structure generation
techniques. In addition to the baseline data structure defini-
tions, we also describe for each data structure an additional
property that targets an interesting part of the space of such
structures; these additional properties stress both the perfor-
mance and usability of the competing generation techniques.
Three of the structures have been evaluated in prior work,
and are included here for comparison: sorted linked lists, red-
black trees, and heaps. Four of the structures have never been
evaluated for generation before this work: image grammars,
skip lists, splay trees, and B-trees. The additional properties
for all of the structures, including the three structures seen in
prior work, are novel to this work.

Here we informally describe the structures and properties.
The exact predicates that we use to specify them are available
in the supplementary materials3, including the Korat, UDITA,
and CLP specifications.

Sorted Linked Lists. A sorted linked list is a linked list whose
nodes are ordered according to their contents, in this case
integers. Both UDITA [4] and Senni et al. [13] generated these
data structures.

Additional Property: We target lists where each integer
element is separated by at most a value of k. For example,
a valid list for k = 3 would be [0, 2, 5, 5].

Red-Black Trees. A red-black tree is a type of balanced
binary search tree that is commonly used as an efficient

3http://www.cs.ucsb.edu/∼pllab/ under the Downloads link.

representation for sets and maps. Korat [2], UDITA [4], and
Senni et al. [13] all showed that they could generate red-black
trees with varying degrees of success.

Additional Property: We target red-black trees such that
inserting a given element is guaranteed to cause rebalancing.
Intuitively, this means that given an element value, we generate
red-black trees such that if the given element is inserted into
the tree it will cause a rebalance to occur. This property
requires us to encode the insertion and rebalancing operations
in our predicate that describes acceptable red-black trees.

Heaps. A heap is a type of balanced binary tree that is
commonly used to represent priority queues efficiently. While
heaps are usually described as trees, they are often backed
by arrays in imperative settings and thisis the underlying
representation that we use as well. As with red-black trees,
Korat [2], UDITA [4], and Senni et al. [13] all generated these
structures.

Additional Property: We target heaps which require exactly
log2 n operations on dequeue, where n is the number of
nodes in the heap. Such data structures show worst-case
behavior, and are interesting not only for testing but for
benchmarking. This property requires encoding the dequeue
operation in the predicate describing acceptable heaps.

Image Grammars. Many data representations can be ex-
plained in terms of grammars. ASTGen [3] heavily focused
on grammars, and claimed that declarative approaches were
generally ill-suited to generating structures that obey gram-
mars. While there is prior work on generating programs from
context-free grammars [29], we instead focus on the context-
sensitive grammar of the ANI image format [30]. Bugs in
parsers for this grammar have been historically costly [31].
We observe that the ANI grammar is not well-documented,
and that there are several edge cases where it is unclear if a
parser should accept or reject a given image. For our standard
definition of ANI images we avoid these edge cases.

Additional Property: We target specifically those edge cases
that we avoid in the standard definition. In other words, we
target ANI images that are guaranteed to contain at least one
edge case. These edge cases are:

• A Rate subsection is named “LIST”, which introduces
a parsing ambiguity with another image component with
the same name.

• An InfoList subsection has size 2, which should not
be possible with valid data.

• The title or author field holds a non-printable
character.

• The image contains no icons (indicated with an icon
length of 0), which are core components of the image.

• The jifRate is 0, which corresponds to an animation
that would move infinitely fast.

Skip Lists. A skip list [32] is a special DAG-like representa-
tion of a linked list that allows for multiple elements in a list
to be traversed in a single operation. The consequence of this
on peformance is that inserting an element into a sorted linked

http://www.cs.ucsb.edu/~pllab/

list can be performed in O(log n), unlike the typical O(n). Of
special interest is that these data structures rely on probabilistic
features and thus do not have deterministic shapes.

Additional Property: We target skip lists where fewer than
k% of the elements have the maximum height. The observation
this property is based on is that the smaller this percentage
becomes, the less likely the data structure is in practice (due
to the probabilistic features of the skip list algorithm), and
thus we are more likely to generate what can be considered
an edge case. Ideally we would like a very small percentage,
though this percentage also influences the number of elements
in the tree. To keep list sizes manageable, we use k = 25.

Splay Trees. Splay trees [33] are a type of binary search tree,
which are known for their imperative implementation. The
value of these trees is in their ability to reconfigure themselves
so that, from an intuitive standpoint, elements which are
freqently accessed are cheaper to access than others. Central to
this reconfiguration is a splay operation that moves a given
element to the root of the tree via a series of modifications.

Additional Property: Due to the splay operation, the shape
of a splay tree can vary widely between different operations
which call splay. For testing, we are interested in particularly
dramatic changes to the tree’s shape. Specifically, we want to
generate trees for which the following two properties hold in
conjunction, where N is the total number of nodes in the tree:

• The tree contains at least one node at depth greater than
d1.5× log2 (N)e.

• If a splay operation is performed on any single node
in the tree, all nodes in the tree would have depth ≤
d1.5× log2 (N)e.

The aforementioned properties define splay trees which can
become more balanced via some particular use of splay.
Generating such splay trees would be useful for testing any
optimization scheme based on this observation.

B-Trees. B-trees [34], [35] are a complex tree-based data
structure which are used heavily in databases and filesystems.
Given the fact that these are so popular at base system levels, it
is useful to be able to generate these automatically for testing
purposes.

Additional Property: We take a similar approach as with
red-black trees, generating trees which would experience node-
splitting given some particular value to insert.

VI. EVALUATION

We evaluate and compare Korat, UDITA, and CLP for
performance, scalability, and usability. The overall goal of
our evaluation is to back our claims that CLP is a high-
performance technique, but one which can be unwieldy to use,
especially with respect to imperative operations.

A. Experimental Methodology

We have specified basic versions of the seven data structures
described in Section V and also advanced versions containing
the additional properties, in each of Korat, UDITA, and CLP.
To be concise, we uniformly refer to these 14 versions as “data

structures”. The basic data structure is referred to as “basic”,
and the version of the data structure with the additional
property is referred to as “special”.

To measure performance we record the time each technique
takes to generate all structures within a given set of bounding
values. While evaluations in prior work report bounds as a
single uniform value n, we observe that this does not reflect
reality for even the simplest of data structures. That is, for
all the data structures involved, there are multiple distinct
bounding values that must be specified. Therefore, we report
all of the bounding values used for each data structure. A
description of these bounding values is provided in Table I.
Henceforth we will refer to these bounding values via comma-
separated lists of integers, where the integer’s position reflects
which bound is being referred to in Table I and the integer
value is the actual bound. For example, with basic sorted lists
the bounds “2, 3” would mean a maximum of two nodes, and
a maximum element value of three. Additionally, we set k = 3
for special sorted lists (see Section V) and we ensure that we
insert an element distinct from the tree contents for special
red-black trees and special B-trees. To measure scalability, we
break the performance results into three separate groupings
based on small, medium, and large bounding values. For CLP,
we chose GNU Prolog [36], [17] as our engine due to its
public availability and high performance.

As a proxy for usability, we record the approximate amount
of time needed to specify the given data structure for an
author already familiar with the particular generator language
being used. In cases where code was already provided by the
authors of Korat and UDITA, we consider this to have taken
0 minutes. Where possible we used publicly available code
for our specifications. In all cases, we specify the additional
property for a given data structure after the data structure itself
was specified, which often helped to reduce the amount of time
necessary to specify the additional property.

Secondary to the amount of time needed to specify the data
structures are various measures which act as proxies for code
complexity. For each of the techniques we record lines of
code (LOC). We record the maximum number of variables
ever in scope at once, which gives an idea of the amount
of state manipulation and passing that is required to specify
a given data structure, and we argue is correlated with the
amount of state the programmer must reason about. For Korat
and UDITA we record the number of conditionals (treating
loops as conditionals), along with the maximum nesting depth
for conditionals. The observation here is that conditionals,
especially deeply nested conditionals, signify complex control
flow. This measure does not have a direct translation in CLP,
which is why it is only recorded for the Java-based Korat
and UDITA. For CLP, we measure the maximum call-graph
strongly-connected component (SCC) size after implications
are refactored into clauses, which provides a measure of how
many levels deep mutual recursion becomes. For example,
a maximum SCC size of four means that there are four
clauses that contain mutually recursive references to each
other. Mutual recursion indicates complex control flow and

a high cognitive burden on the programmer. We also measure
the number of metacalls performed in CLP, specifically call
and maplist instructions, so chosen because these tend to be
unintuitive and again translate to high cognitive overhead. The
last metric we report is the number of static assignments used
in the Korat and UDITA versions. While this is not strictly a
measure of code complexity, it is a potentially useful predictor
of complexity in the CLP version because the assignment
operation is fundamentally unavailable in CLP and must be
worked around.

B. Performance Results and Discussion

Performance data for Korat, UDITA, and CLP generators
for small, medium, and large bounds are shown in Tables II,
III, and IV, respectively. There are several key points to make
with this data, which are brought out in order of increasing
bounds.

Poor UDITA Performance. As shown in Table II, even
with small bounds UDITA often takes orders of magnitude
more time than Korat. According to the prose found in the
literature [3], [4], UDITA is faster than ASTGen which itself is
implied to be much faster than Korat. We initially thought that
our setup must be in some way malformed, but upon further
examination this observation turns out to be consistent with
results reported separately for Korat [2] and UDITA [4]. For
example, while Korat and UDITA both evaluate on heap arrays
of length 8 in the two works cited above, UDITA is a full order
of magnitude slower than the same result in Korat, despite the
fact that UDITA was introduced nearly 8 years after Korat.
UDITA was never directly evaluated against Korat, though
it was evaluated against its predecessor ASTGen, which is
implied to be faster than Korat (though this is never evaluated
empirically). Given that UDITA is generally faster than AST-
Gen, we conclude that the imperative-style generation used
in ASTGen and UDITA has significantly worse performance
than declarative-style generation using CLP.

Korat on B-Trees. Given the above results, an unexpected dat-
apoint in Table II is that Korat takes orders of magnitude more
time than UDITA with basic B-trees, though its performance
improves by orders of magnitude when considering special
B-trees. This performance is due to the fact that Korat must
generate arrays all at once—Korat cannot piece arrays together
incrementally, in contrast to UDITA. Our B-tree specification
relies heavily on arrays and constraints on arrays, and so Korat
ends up generating many unsatisfiable arrays in relation to
UDITA. Korat on special B-trees is much faster because there
is only one satisfying structure in the space. In other words, the
vast majority of the structures in this space are invalid—since
Korat learns from negative information, it very quickly learns
the fact that the space is nearly entirely unsatisfiable, and is
able to skip most of that space without having to explore it.

Excellent CLP Performance. For all data structures and for
all bounds, CLP outperforms Korat and UDITA, usually by
orders of magnitude. This is best shown in Table IV, which

TABLE II: PERFORMANCE DATA FOR SMALL BOUNDS, IN SECONDS.

Data Structure Bounds Korat UDITA CLP
Basic Sorted Lists 6, 6 0.266 898 0.001
Special Sorted Lists 6, 6 0.226 898 0.001
Basic Red-Black Trees 10, 10 45.8 322 0.3
Special Red-Black Trees 10, 10 24.7 327 0.168
Basic Heaps 8, 8 5.6 335 0.96
Special Heaps 8, 8 4.8 347 0.036
Basic Images 2, 1, 1, 1, 2 12.9 1027 2.8
Special Images 1, 1, 1, 1, 1 41 1611 7
Basic Skip Lists 4, 3, 3 67.4 1461 0.001
Special Skip Lists 4, 3, 3 58.4 1467 0.001
Basic Splay Trees 5, 5 1.86 66.8 0.001
Special Splay Trees 4, 4 0.386 81.8 0.001
Basic B-Trees 2, 2 140 1.05 0.001
Special B-Trees 2, 2 3.64 1 0.001

features large bounds for these data structures. As shown, with
large bounds, Korat and UDITA timeout on all data structures,
whereas CLP does not timeout on anything.

There are several reasons why CLP offers such good per-
formance. With CLP we have more direct control over the
search strategy. For example, consider B-trees, which have
an invariant that all leaves must be on the same level. With
Korat, the best we can do is assert that this is true and hope
that the Korat engine learns the pattern. With CLP, we directly
constrain the generation so that all leaves are on the same level
by construction, and so that they are only put at positions
where they could legally be with respect to the number of
nodes in the tree. This ends up cutting down dramatically on
the amount of unsatisfiable search space.

A second major reason for CLP’s performance is the
presence of an arithmetic constraint solver. As an example,
consider the performance results for the additional property
on red-black trees in Table III. While the property intuitively
requires a generate-and-filter approach, we can actually do
better with CLP. CLP allows us to impose symbolic arithmetic
constraints on the data structure which force rebalancing to
occur with respect to a given key, even without knowing
the concrete values in the tree. This means that once the
constraints are imposed, it is a simple matter of enumerating
all integers which satisfy the symbolic constraints, which is a
relatively low-cost operation. In contrast, with both Korat and
UDITA, we are forced to take a generate-and-filter approach.

A third reason for the performance gains is that with CLP,
we are implicitly utilizing decades of research into making
nondeterministic search and arithmetic constraint solvers fast.
We get these benefits “for free” just using the existing GNU
Prolog engine.

C. Usability Results and Discussion

We compare our proxy usability metrics for Korat and
CLP in Tables V and VI, respectively. UDITA results are
comparable to Korat and omitted for space. First, we observe
that it took less time and code to specify the image grammars
for CLP (Table VI) than it did for Korat (Table V). While
CLP introduces many more variables in scope, most of these
are used in trivial ways. With this in mind, we argue that CLP
is well-suited to specifying grammars. This is contrary to state-
ments made by ASTGen regarding the usability of declarative

TABLE I: DESCRIPTION OF BOUNDS FOR ALL DATA STRUCTURES UNDER TEST. IN ALL CASES, THE MINIMUM ELEMENT VALUE IS 0.

Data Structure Bound 1 Bound 2 Bound 3 Bound 4 Bound 5
Sorted Lists Max # of Elements Max Element Value — — —
Red-Black Trees Max # of Internal Nodes Max Node Value — — —
Heaps Max # of Internal Nodes Max Node Value — — —
Images Max # of Icons Max Title Length Max Author Length Max cSteps Max jifRate
Skip Lists Max Height Max # Elements Max Element Value — —
Splay Trees Max # of Internal Nodes Max Element Value — — —
B-Trees Max # of Nodes Max Element Value — — —

TABLE III: PERFORMANCE DATA FOR MEDIUM BOUNDS. “—” SIGNIFIES
TIMEOUT AFTER 1800 SECONDS (30 MINUTES).

Data Structure Bounds Korat UDITA CLP
Basic Sorted Lists 12, 13 62.5 — 1.61
Special Sorted Lists 12, 13 51.5 — 0.38
Basic Red-Black Trees 12, 12 1218 — 1.26
Special Red-Black Trees 12, 12 709 — 0.804
Basic Heaps 9, 9 55.1 — 6.32
Special Heaps 9, 9 45.6 — 1.18
Basic Images 2, 1, 1, 2, 2 908 — 37
Special Images 2, 1, 1, 2, 2 — — 279
Basic Skip Lists 4, 4, 4 — — 0.001
Special Skip Lists 4, 4, 4 — — 0.001
Basic Splay Trees 6, 6 96.7 — 0.016
Special Splay Trees 6, 6 361 — 0.004
Basic B-Trees 4, 4 — — 0.001
Special B-Trees 4, 4 — — 0.001

TABLE IV: PERFORMANCE DATA FOR LARGE BOUNDS. “—” SIGNIFIES
TIMEOUT AFTER 1800 SECONDS (30 MINUTES).

Data Structure Bounds Korat UDITA CLP
Basic Sorted Lists 17, 17 — — 569
Special Sorted Lists 18, 18 — — 734
Basic Red-Black Trees 18, 18 — — 189
Special Red-Black Trees 20, 20 — — 560
Basic Heaps 11, 11 — — 873
Special Heaps 12, 12 — — 937
Basic Images 20, 1, 1, 2, 2 — — 691
Special Images 10, 1, 1, 2, 2 — — 1792
Basic Skip Lists 9, 9, 9 — — 1136
Special Skip Lists 9, 9, 9 — — 810
Basic Splay Trees 11, 11 — — 487
Special Splay Trees 12, 12 — — 380
Basic B-Trees 10, 20 — — 67.5
Special B-Trees 20, 20 — — 102

techniques for grammar generators, though it is supported by
prior work on automated program generation [29].

Comparing Korat to CLP shows major differences with
respect to our data. The specification time for CLP is generally
much higher than for Korat, exemplified best by B-trees. One
explanatory hypothesis is that the more assignment statements
there are, the more cognitive overhead is required to translate
to CLP. We argue that this is a poor predictor, as evidenced
by the fact that the number of assignments in Table V does
not correlate well to the specification times in Table VI.
The lack of correlation is explained by the observation that
certain assignments are more difficult to translate than others.
For example, consider special splay trees, which use the
imperative-style rotateLeft operation shown below:

private Node rotateLeft(Node h) {
Node x = h.right;
h.right = x.left;
x.left = h;
return x;

}

The translation of this code into CLP yields the following:

rotateLeft(tree(B, AElem, tree(F, CElem, G)),
tree(tree(B, AElem, F), CElem, G)).

While the CLP version is quite short, it took a full 30 minutes
to derive and looks markedly different from the original
imperative definition of the rotateLeft operation. This
leads us to argue that the number of assignments is a poor
predictor of specification time.

We argue that ultimately the reason why the CLP speci-
fication time is so high is because the data structures under
consideration generally have only imperative descriptions. For
Korat, third-party code implementing these structures with
their various operations is publicly available, making it pos-
sible to simply borrow existing implementations. In contrast,
with CLP, not only is code unavailable, existing imperative
code is so different semantically that it cannot be translated
directly. Instead, it is absolutely required to have a deep
understanding of the data structure and the operations at hand,
so that these can be emulated in a declarative way. In short,
with CLP we must have in-depth knowledge of exactly what
is being generated, and we do not have the luxury of being
able to borrow code or even translate pseudocode.

The proxy metrics for code complexity tell a similar story. In
terms of LOC, CLP appears to be the clear winner. However,
as shown via the max SCC size in Table VI, not only is
recursion required for all data structures, mutual recursion
(with all its added complexity and cognitive burden) is of-
ten needed. This observation holds true especially for those
structures that are novel to this work, e.g., an SCC size of 10
for special splay trees and an SCC size of 8 for special heaps.
A similar, though less strong, pattern is seen with the number
of variables, especially with the special B-trees. All the data
structures involve metacalls, which impede understanding. For
these reasons, we argue that CLP easily leads to code which
is higher in complexity than corresponding imperative code,
contrary to the assertions of Senni et al. [13].

D. Threats to Validity

In cases where existing data structure generation code was
not already available from the authors of Korat [2] and
UDITA [4], we had to write our own generators. The perfor-
mance of these tools can be sensitive to the coding style used,
so it is conceivable that our generators for these data structures
could be further optimized. With respect to our usability and
complexity results, a full user study has not been performed
and these results are specific to the authors and the coding style
used. As such, these values are not necessarily representative

TABLE V: USABILITY DATA FOR KORAT. TIMES TO SPECIFY ARE APPROXIMATE, IN MINUTES.

Data Structure Time to Specify LOC # Assignments # Conditionals / Max Depth Max # Variables In Scope
Basic Sorted Lists 0 68 3 12 / 2 5
Special Sorted Lists 20 92 6 17 / 2 7
Basic Red-Black Trees 0 174 1 33 / 3 10
Special Red-Black Trees 30 296 29 49 / 3 10
Basic Heaps 0 42 2 8 / 3 5
Special Heaps 40 77 11 14 / 3 13
Basic Images 90 185 4 10 / 2 7
Special Images 40 230 10 21 / 2 8
Basic Skip Lists 90 79 4 16 / 3 9
Special Skip Lists 30 86 4 16 / 3 9
Basic Splay Trees 60 93 3 14 / 3 10
Special Splay Trees 40 191 21 34 / 3 11
Basic B-Trees 60 113 5 19 / 4 7
Special B-Trees 40 155 12 24 / 3 7

TABLE VI: USABILITY DATA FOR CLP. TIMES TO SPECIFY ARE APPROXIMATE, IN MINUTES.

Data Structure Time to Specify LOC Max SCC Size # Metacalls Max # Variables In Scope
Basic Sorted Lists 5 13 1 1 4
Special Sorted Lists 5 26 1 1 5
Basic Red-Black Trees 60 33 1 2 14
Special Red-Black Trees 120 67 1 2 14
Basic Heaps 20 43 2 1 7
Special Heaps 180 103 8 1 11
Basic Images 60 149 1 7 19
Special Images 30 165 1 7 19
Basic Skip Lists 240 54 4 2 7
Special Skip Lists 20 77 4 5 7
Basic Splay Trees 15 31 1 2 10
Special Splay Trees 360 101 10 2 11
Basic B-Trees 600 85 3 4 11
Special B-Trees 480 217 7 5 22

of a typical professional programmer. Additionally, our code
complexity metrics serve only as easily-measurable proxies for
actual code complexity, which is arguably more subjective.

VII. DISCUSSION

We have shown that CLP is, by far, the best-performing
technique for automated data structure generation, with Korat
and UDITA trailing behind significantly. However, we argue
that CLP is also less usable than Korat and UDITA, and that
CLP can lead to more complex code. Ideally, we would like a
single solution that gets the best of both worlds. In this section
we argue against certain solutions that might seem intuitively
appealing, and for one particular solution that we feel would
be a fruitful avenue for future work.

The observation underlying all of the possible solutions is
that we need to have imperative elements (i.e., loops and
assignment) in the data structure specification language to
maximize usability, yet still take advantage of CLP’s superior
performance. Modifying the CLP language itself to include
these features is a non-starter, as these do not compose well
with existing CLP optimization work. Similarly, attempting to
put CLP features into an imperative language is undesirable,
as evidenced by UDITA’s poor performance. One seemingly
appealing idea is to compile existing Korat specifications
written in Java down to CLP, though this is problematic. For
one, the mere translation from Java to CLP is a difficult prob-
lem (e.g., [37], [38]). Moreover, Korat assumes a completely
different execution model than CLP, so direct translations
would be inherently inefficient and likely non-terminating.
Korat predicates must explicitly check for acyclicity in the

data structure being specified, while acyclicity is guaranteed
by CLP under certain common constraints, so directly trans-
lating Korat predicates to CLP would yield unnecessary code.
Conversely, since Korat bounds the state space upfront, Korat
predicates need not concern themselves with bounds. CLP
predicates, in contrast, need bounds to ensure termination.

Bearing all this in mind, we believe that the most promising
strategy is to design a small, custom imperative-style domain-
specific language (DSL) for data structure specification that
compiles down to CLP. The language’s execution model would
be similar to that of CLP, with loops and assignment translated
to recursion and store-passing style, respectively. The language
would be designed from the ground up to avoid the sort of
issues seen in translating Korat predicates directly to CLP.

VIII. CONCLUSIONS AND FUTURE WORK

We have shown that for data structure generation the
common wisdom regarding the performance benefits of im-
perative techniques is incorrect, with declarative techniques
being orders of magnitude faster than existing imperative
techniques. Conversely, we have argued that the commonly-
heralded usability benefits of declarative techniques are ex-
aggerated when it comes to more complex data structures
unexamined in prior work, and with these data structures
imperative techniques seem to be more usable. Fundamentally,
the lack of imperative features in CLP makes it unattractive
for implementing many data structures. Building from these
insights, for future work we plan to implement an external
DSL that offers the imperative features desirable for usability,
but compiles to CLP for performance.

REFERENCES

[1] D. Marinov and S. Khurshid, “Testera: A novel framework for
automated testing of java programs,” in Proceedings of the 16th IEEE
International Conference on Automated Software Engineering, ser. ASE
’01. Washington, DC, USA: IEEE Computer Society, 2001, pp. 22–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=872023.872551

[2] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: automated testing
based on java predicates,” in Proceedings of the 2002 ACM SIGSOFT
international symposium on Software testing and analysis, ser. ISSTA
’02. New York, NY, USA: ACM, 2002, pp. 123–133. [Online].
Available: http://doi.acm.org/10.1145/566172.566191

[3] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated testing of
refactoring engines,” in Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, ser. ESEC-FSE
’07. New York, NY, USA: ACM, 2007, pp. 185–194. [Online].
Available: http://doi.acm.org/10.1145/1287624.1287651

[4] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak,
and D. Marinov, “Test generation through programming in udita,”
in Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ser. ICSE ’10. New
York, NY, USA: ACM, 2010, pp. 225–234. [Online]. Available:
http://doi.acm.org/10.1145/1806799.1806835

[5] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM
Trans. Softw. Eng. Methodol., vol. 11, no. 2, pp. 256–290, Apr. 2002.
[Online]. Available: http://doi.acm.org/10.1145/505145.505149

[6] K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit testing engine
for c,” in Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering, ser. ESEC/FSE-13.
New York, NY, USA: ACM, 2005, pp. 263–272. [Online]. Available:
http://doi.acm.org/10.1145/1081706.1081750

[7] N. Tillmann and J. De Halleux, “Pex: white box test generation for .net,”
in Proceedings of the 2nd international conference on Tests and proofs,
ser. TAP’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 134–153.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1792786.1792798

[8] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, ser. PLDI ’05.
New York, NY, USA: ACM, 2005, pp. 213–223. [Online]. Available:
http://doi.acm.org/10.1145/1065010.1065036

[9] C. Cadar, D. Dunbar, and D. Engler, “Klee: unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proceedings of the 8th USENIX conference on Operating
systems design and implementation, ser. OSDI’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 209–224. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855756

[10] D. Kroening and O. Strichman, Decision Procedures: An Algorithmic
Point of View, ser. Texts in Theoretical Computer Science. An EATCS
Series. Springer, 2008. [Online]. Available: http://books.google.com/
books?id=anJsH3Dq5BIC

[11] V. Jagannath, Y. Y. Lee, B. Daniel, and D. Marinov, “Reducing
the costs of bounded-exhaustive testing,” in Proceedings of the 12th
International Conference on Fundamental Approaches to Software
Engineering: Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2009, ser. FASE ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 171–185. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-00593-0 12

[12] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model checking
programs,” Automated Software Engg., vol. 10, no. 2, pp. 203–232, Apr.
2003. [Online]. Available: http://dx.doi.org/10.1023/A:1022920129859

[13] V. Senni and F. Fioravanti, “Generation of test data structures
using constraint logic programming,” in Proceedings of the 6th
international conference on Tests and Proofs, ser. TAP’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 115–131. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-30473-6 10

[14] D. H. D. Warren, “An abstract prolog instruction set,” AI Center, SRI
International, 333 Ravenswood Ave., Menlo Park, CA 94025, Tech. Rep.
309, Oct 1983.

[15] H. Nässén, M. Carlsson, and K. Sagonas, “Instruction merging and
specialization in the sicstus prolog virtual machine,” in Proceedings
of the 3rd ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, ser. PPDP ’01. New

York, NY, USA: ACM, 2001, pp. 49–60. [Online]. Available:
http://doi.acm.org/10.1145/773184.773191

[16] P. Van Roy and A. M. Despain, “High-performance logic programming
with the aquarius prolog compiler,” Computer, vol. 25, no. 1, pp. 54–68,
Jan. 1992. [Online]. Available: http://dx.doi.org/10.1109/2.108055

[17] D. Diaz and P. Codognet, “The gnu prolog system and its
implementation,” in Proceedings of the 2000 ACM Symposium
on Applied Computing - Volume 2, ser. SAC ’00. New York,
NY, USA: ACM, 2000, pp. 728–732. [Online]. Available: http:
//doi.acm.org/10.1145/338407.338553

[18] J. Hooker, “Solving the incremental satisfiability problem,” The
Journal of Logic Programming, vol. 15, no. 12, pp. 177 – 186,
1993. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/074310669390018C

[19] J. Whittemore, J. Kim, and K. Sakallah, “Satire: A new incremental
satisfiability engine,” in Proceedings of the 38th Annual Design
Automation Conference, ser. DAC ’01. New York, NY, USA: ACM,
2001, pp. 542–545. [Online]. Available: http://doi.acm.org/10.1145/
378239.379019

[20] D. H. D. Warren, L. M. Pereira, and F. Pereira, “Prolog - the
language and its implementation compared with lisp,” SIGART
Bull., no. 64, pp. 109–115, Aug. 1977. [Online]. Available:
http://doi.acm.org/10.1145/872736.806939

[21] K. Sullivan, J. Yang, D. Coppit, S. Khurshid, and D. Jackson, “Software
assurance by bounded exhaustive testing,” in Proceedings of the 2004
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA ’04. New York, NY, USA: ACM, 2004, pp. 133–
142. [Online]. Available: http://doi.acm.org/10.1145/1007512.1007531

[22] D. Marinov, A. Andoni, D. Daniliuc, S. Khurshid, and M. Rinard, “An
evaluation of exhaustive testing for data structures,” MIT Computer
Science and Artificial Intelligence Laboratory Report MIT -LCS-TR-
921, Tech. Rep., 2003.

[23] J. Ruderman, “Introducing jsfunfuzz,” 2007. [Online]. Available:
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/

[24] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager, “SWI-Prolog,”
Theory and Practice of Logic Programming, vol. 12, no. 1-2, pp. 67–
96, 2012.

[25] E. J. G. Arias, J. M. Carballo, and J. M. R. Poza, “A proposal
for disequality constraints in curry,” Electronic Notes in Theoretical
Computer Science, vol. 177, no. 0, pp. 269 – 285, 2007, proceedings of
the 15th Workshop on Functional and (Constraint) Logic Programming
(WFLP 2006). [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1571066107002265

[26] S. Krishnamurthi, “Store-passing style,” 2002. [Online]. Available:
http://cs.brown.edu/courses/cs173/2003/Textbook/2003-10-10.pdf

[27] G. Richards, C. Hammer, B. Burg, and J. Vitek, “The eval that men
do: A large-scale study of the use of eval in javascript applications,”
in Proceedings of the 25th European Conference on Object-oriented
Programming, ser. ECOOP’11. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 52–78. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2032497.2032503

[28] R. A. O’Keefe, The Craft of Prolog. Cambridge, MA, USA: MIT Press,
1990.

[29] K. Dewey, J. Roesch, and B. Hardekopf, “Language fuzzing using
constraint logic programming,” in Proceedings of the 29th IEEE In-
ternational Conference on Automated Software Engineering, ser. ASE
’14, 2014.

[30] J. Houghtaling, “Windows 95 animated cursor format.” [Online].
Available: http://www.wotsit.org/download.asp?f=ani&sc=463191359

[31] M. Christakis and P. Godefroid, “Proving memory safety of the
ani windows image parser using compositional exhaustive testing,”
Tech. Rep. MSR-TR-2013-120, November 2013. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=204915

[32] W. Pugh, “Concurrent maintenance of skip lists,” College Park, MD,
USA, Tech. Rep., 1990.

[33] D. D. Sleator and R. E. Tarjan, “Self-adjusting binary search trees,”
J. ACM, vol. 32, no. 3, pp. 652–686, Jul. 1985. [Online]. Available:
http://doi.acm.org/10.1145/3828.3835

[34] R. Bayer and E. McCreight, “Organization and maintenance of large
ordered indices,” in Proceedings of the 1970 ACM SIGFIDET (Now
SIGMOD) Workshop on Data Description, Access and Control, ser.
SIGFIDET ’70. New York, NY, USA: ACM, 1970, pp. 107–141.
[Online]. Available: http://doi.acm.org/10.1145/1734663.1734671

http://dl.acm.org/citation.cfm?id=872023.872551
http://doi.acm.org/10.1145/566172.566191
http://doi.acm.org/10.1145/1287624.1287651
http://doi.acm.org/10.1145/1806799.1806835
http://doi.acm.org/10.1145/505145.505149
http://doi.acm.org/10.1145/1081706.1081750
http://dl.acm.org/citation.cfm?id=1792786.1792798
http://doi.acm.org/10.1145/1065010.1065036
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://books.google.com/books?id=anJsH3Dq5BIC
http://books.google.com/books?id=anJsH3Dq5BIC
http://dx.doi.org/10.1007/978-3-642-00593-0_12
http://dx.doi.org/10.1023/A:1022920129859
http://dx.doi.org/10.1007/978-3-642-30473-6_10
http://doi.acm.org/10.1145/773184.773191
http://dx.doi.org/10.1109/2.108055
http://doi.acm.org/10.1145/338407.338553
http://doi.acm.org/10.1145/338407.338553
http://www.sciencedirect.com/science/article/pii/074310669390018C
http://www.sciencedirect.com/science/article/pii/074310669390018C
http://doi.acm.org/10.1145/378239.379019
http://doi.acm.org/10.1145/378239.379019
http://doi.acm.org/10.1145/872736.806939
http://doi.acm.org/10.1145/1007512.1007531
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
http://www.sciencedirect.com/science/article/pii/S1571066107002265
http://www.sciencedirect.com/science/article/pii/S1571066107002265
http://cs.brown.edu/courses/cs173/2003/Textbook/2003-10-10.pdf
http://dl.acm.org/citation.cfm?id=2032497.2032503
http://dl.acm.org/citation.cfm?id=2032497.2032503
http://www.wotsit.org/download.asp?f=ani&sc=463191359
http://research.microsoft.com/apps/pubs/default.aspx?id=204915
http://doi.acm.org/10.1145/3828.3835
http://doi.acm.org/10.1145/1734663.1734671

[35] R. Bayer, “Binary b-trees for virtual memory,” in Proceedings
of the 1971 ACM SIGFIDET (Now SIGMOD) Workshop on
Data Description, Access and Control, ser. SIGFIDET ’71. New
York, NY, USA: ACM, 1971, pp. 219–235. [Online]. Available:
http://doi.acm.org/10.1145/1734714.1734731

[36] “The gnu prolog website.” [Online]. Available: http://www.gprolog.org/

[37] C. Flanagan, “Automatic software model checking via constraint
logic,” Science of Computer Programming, vol. 50, no. 13, pp. 253

– 270, 2004, 12th European Symposium on Programming (ESOP
2003). [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167642304000073

[38] M. Gómez-zamalloa, E. Albert, and G. Puebla, “Test case generation
for object-oriented imperative languages in clp*,” Theory Pract. Log.
Program., vol. 10, no. 4-6, pp. 659–674, Jul. 2010. [Online]. Available:
http://dx.doi.org/10.1017/S1471068410000347

http://doi.acm.org/10.1145/1734714.1734731
http://www.gprolog.org/
http://www.sciencedirect.com/science/article/pii/S0167642304000073
http://www.sciencedirect.com/science/article/pii/S0167642304000073
http://dx.doi.org/10.1017/S1471068410000347

