
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
G
O
*

Ar
t ifact *

A
E
C

A Parallel Abstract Interpreter for JavaScript

Kyle Dewey Vineeth Kashyap Ben Hardekopf
University of California, Santa Barbara
{kyledewey,vineeth,benh}@cs.ucsb.edu

Abstract
We investigate parallelizing flow- and context-sensitive
static analysis for JavaScript. Previous attempts to paral-
lelize such analyses for other languages typically start with
the traditional framework of sequential dataflow analysis,
and then propose methods to parallelize the existing sequen-
tial algorithms within this framework. However, we show
that this approach is non-optimal and propose a new per-
spective on program analysis based on abstract interpreta-
tion that separates the analysis into two components: (1) an
embarrassingly parallel state exploration of a state transi-
tion system; and (2) a separate component that controls the
size of the state space by selectively merging states, thus
injecting sequential dependencies into the system. This per-
spective simplifies the parallelization problem and exposes
useful opportunities to exploit the natural parallelism of the
analysis.

We apply our insights to parallelize a JavaScript ab-
stract interpreter. Because of JavaScript’s dynamic nature
and tricky semantics, static analysis of JavaScript is difficult
to scale—one of our benchmarks with only 2.8 KLOC takes
over 22 hours to analyze using the sequential JavaScript ab-
stract interpreter. Thus, JavaScript is an excellent case study
for the benefits of our approach. Our resulting parallel imple-
mentation sees significant benefits on real-world JavaScript
programs, with speedups between 2–4× on average with a
superlinear maximum of 36.9× on 12 hardware threads.

1. Introduction
JavaScript is prevalent on a wide variety of platforms, in-
cluding the web, mobile phones, desktops, and servers.
Static analysis for JavaScript is a necessity to help build
developer tools to construct and review secure, fast, main-
tainable, and correct JavaScript code. In order to be use-
ful, such JavaScript analyses need to be precise and to run
within a reasonable amount of time. However, JavaScript’s
inherently dynamic nature makes precise static analysis very
expensive. As an anecdotal example, we have observed a
particular 2,800 line JavaScript program1 on which a se-
quential JavaScript analysis that computes data and control
dependencies takes over 22 hours to complete. While in the

1 linq aggregate with stack-5-4

early days of its introduction JavaScript programs tended
to be small, simple scripts, today there are many complex
JavaScript applications with tens to hundreds of thousands
of lines of code. Thus, there is a need to increase JavaScript
analysis performance while maintaining high levels of pre-
cision.

A heretofore unexplored option is to parallelize the
JavaScript analysis, thus exploiting the prevalence of mod-
ern multicore architectures. The idea of parallel program
analysis is not novel; there are many existing parallel pro-
gram analysis frameworks [10, 14, 15, 23, 24, 26–28, 32].
However, most of these efforts are aimed at first-order,
statically-typed, highly imperative languages such as C or
Fortran; JavaScript presents new challenges that must be
addressed. Our novelty lies not only in the first parallel
JavaScript static analysis, but also in the approach with
which we design our parallel analysis, which potentially
could benefit parallel analysis of other languages.

Key Insight. We focus on parallel analyses that are flow-
and context-sensitive, because we need a high level of pre-
cision to successfully analyze JavaScript. Almost all such
precise parallel analyses in existing work are based on tra-
ditional dataflow analysis (DFA) [20, 22]. Our key insight is
that the DFA framework inextricably mixes decisions about
synchronization and granularity with the definition of the
analysis itself, thus limiting opportunities to fully exploit
possible parallelism in such analyses. We identify an alter-
nate approach to program analysis more amenable to paral-
lelization, based on ideas from abstract interpretation. Using
this approach, we can phrase an analysis as two separate and
independent components:

• An abstract semantics that represents the static analy-
sis as a state transition system (STS). The analysis is
defined as a reachable-states computation on the STS:
given a program and its initial state, the analysis finds
all abstract program states potentially reachable from that
initial state. This reachable-states computation is embar-
rassingly parallel in nature, because each state is inher-
ently independent from all other states.
• A separate mechanism for selectively merging multi-

ple abstract states into a single abstract state by over-
approximating the information in the states being merged

2015 IEEE/ACM International Symposium on Code Generation and Optimization
978-1-4799-8161-8/15/$31.00 c©2015 IEEE

together. This merging takes place during the reachabil-
ity computation and is used to bound the reachable state
space in a sound manner. This mechanism effectively
merges branches of the computation tree formed by the
STS, turning it into a DAG and thus adding sequential
behavior (and synchronization points) into the otherwise
parallel reachable-states computation.

From this perspective the static analysis itself is trivially
a massively parallel problem; this parallelism is then lim-
ited by a strategy that determines how and when states are
merged (introducing synchronization into the analysis). Us-
ing this approach, opportunities for parallelizing the anal-
ysis become more obvious than the previous DFA-based
approaches. In fact, existing approaches can be re-defined
as limited instances of our framework. While it is possi-
ble to derive this overall insight purely from a DFA stand-
point, it is not possible to act upon it within the DFA frame-
work because DFA intertwines and conflates the two above-
described components in an inseparable way.

Our new perspective provides a useful framework for de-
signing parallel analyses, but there is still a large design
space to be explored. The strategy for merging states con-
trols the level of synchronization required by the analysis, as
well as the size of the state space being explored; thus it has
a strong impact on parallelism. In addition, while the nor-
mal reachable-states computation is embarassingly parallel,
that does not necessarily mean that taking full advantage of
its inherent parallelism is the best course—there are many
different possible levels of granularity which may provide
performance benefits and tradeoffs.

In essence, in our approach the problem of parallelizing
an analysis boils down to two decisions: determining a strat-
egy for merging states, and selecting a particular level of
granularity at which to operate. In this paper we explore sev-
eral such design points, discussing their rationales and impli-
cations. We include a novel parallelization strategy based on
function contexts.

Contributions. The specific contributions of this work are
the following:

1. A new perspective on the design of parallel program
analyses, based on formulating the analysis as a state
transition system plus a separate state merging strategy.
(Section 3.1)

2. A language-agnostic exploration of the design space of
this parallelization framework, including a novel par-
allelization strategy based on function contexts. (Sec-
tion 3.2)

3. Our implementation of these ideas for JSAI, an abstract
interpreter for JavaScript that computes a fundamental
analysis for JavaScript—performing a combination of
type inference, alias analysis, control-flow analysis, and
string, numeric, and boolean value analysis. (Section 4)

4. An evaluation of our resulting parallel JavaScript abstract
interpreter. Speedups are typically in the 2-4× range on
12 hardware threads, ranging as high as 36.9× . (Sec-
tion 5)

5. A publicly available implementation.2

2. Background and Related Work
In this section we provide a brief background on sequential
dataflow analysis (DFA) and describe related work on paral-
lelizing program analysis, much of which is based on DFA.

2.1 Sequential Dataflow Analysis
DFA-based analysis is carried out on the program’s control-
flow graph (CFG), which is a directed graph G = 〈N, E〉
where N is a finite set of nodes corresponding to program
statements and E ⊆ N × N is a set of edges corresponding to
the possible control-flow between statements. The possible
analysis solutions are structured into a lattice L = (Solns,v
,t,u), where the most-precise solution is at the bottom ⊥ of
the lattice and the least-precise solution is at the top > of the
lattice.3

Each node k of the CFG maintains two lattice elements
corresponding to the analysis solutions immediately before
and immediately after that statement: ink represents the in-
coming solution, and outk represents the outgoing solution.
At the beginning of the analysis ink = outk = ⊥ for every k.
Each node k has a transfer function Fk that transforms ink to
outk. For all nodes k, the analysis iteratively computes the
following two functions until the analysis reaches a fixpoint:

ink =
⊔

x∈pred(k)

outx (1)

outk = Fk(ink) (2)

In other words, for each node merge the outgoing infor-
mation from all immediate predecessor nodes (using the lat-
tice join operator) to get that node’s incoming solution, and
then apply that node’s transfer function to get that node’s
outgoing solution. The fixpoint computation is usually per-
formed using a worklist. The worklist is initialized to contain
the program’s entry node; the analysis iteratively performs
the following actions until the worklist is empty (signaling
the fixpoint has been reached): pop a node k from the work-
list; compute ink and outk; if outk is changed from its previ-
ous value then put all successor nodes of k onto the worklist.

The Importance of Node Ordering. The order in which
the worklist processes nodes is irrelevant in terms of cor-
rectness, i.e., the analysis will compute the same solution

2 www.cs.ucsb.edu/˜pllab under Downloads.
3 This is actually opposite of the convention usually used by DFA, which
reverses the lattice described above; we do this to be consistent with the
abstract interpretation convention used later in the paper.

regardless of node ordering. However, it turns out to have
significant impact on analysis performance. Intuitively, a bad
node ordering can cause paths in the CFG to be redundantly
recomputed many times. Suppose a node k is computed to
have outk = ` where lattice element ` ∈ Solns, and this in-
formation is propagated by the worklist down the CFG paths
starting from k. Later the worklist processes a node that is a
predecessor to k, causing k to be processed again, and now
outk = `′ where ` v `′. Then this new information must be
propagated down the CFG again, subsuming the previous so-
lutions along those paths. In the worst case those paths could
be recomputed h times where h is the height of the lattice.
Thus, a good node ordering is important for performance.

2.2 Parallelizing Program Analysis
We categorize the related work on parallelizing flow- and
context-sensitive program analysis into three general ap-
proaches. We leave out work on parallelizing flow- or
context-insensitive analysis, such as that by Méndez-Lojo
et al. [26, 27], Edvinsson et al. [15], and Nagaraj et al. [29].

Worklist-Based Parallelism. This parallelization strategy
operates by processing all nodes currently enqueued on
the analysis worklist in parallel. Dwyer et al. [14] discuss
a worklist-parallel implementation of the FLAVERS DFA
toolset [13] for C. They start a new thread for each node in
a global worklist and each thread enqueues its result back in
that worklist. The authors report average speedups of 3.8×
on 6–9 hardware threads. However, the paper’s evaluation is
problematic in two respects, making it difficult to interpret
the results: (1) the sequential analysis they compare against
used an arbitrary node ordering for the worklist, which in
our experience can cause slow-downs from 2–5× relative
to a more optimized node ordering strategy; and (2) their
evaluation reports analysis runtimes rather than speedups.4

Nondeterminism-Based Parallelism. This parallelization
strategy looks for nondeterministic branch points in the anal-
ysis (e.g., conditional guards with indeterminate truth val-
ues) and executes the branches in parallel until control-flow
merges again (e.g., after the conditional is finished). This ap-
proach is taken by Monniaux [28], who describes a parallel
implementation of the Astrée static analyzer [11] for em-
bedded controller code written in C. The parallel implemen-
tation exploits the fact that, in this particular application do-
main, programs often contain dispatch loops over a switch
statement, and each case within the switch requires sig-
nificant analysis effort and is independent of all other cases.
Thus each case is analyzed in parallel, achieving speedups
between 2–3× on five processors. The usefulness of this
method is highly specific both to C and to idioms common in
the C programs that Astrée targets. Monniaux claims that a
version for general-purpose programs was attempted which

4 Speedups speak of both speed and scalability whereas runtimes tell us only
about how fast something went.

parallelized at arbitrary nondeterministic points, and the re-
sults were dissappointing [28].

Partition-Based Parallelism. This parallelization strategy
partitions the analysis in some way and computes the anal-
ysis of each partition in parallel. This strategy is extremely
general, with a number of distinct instantiations in the liter-
ature.

Lee et al. [24, 25] partition their parallel Fortran analysis
by strongly-connected components (SCC) in the program’s
CFG. Each SCC is analyzed in parallel using separate work-
lists; the SCC solutions are combined using elimination-
based techniques [30]. They achieve an average speedup of
4.6× in 8 threads. However, the speedups were relative to
their parallel analysis running on a single thread rather than
to a specialized sequential version of the analysis.

Weeks et al. [32] partition a parallel analysis for a cus-
tom purely-functional language (used to write concurrent
applications) using dynamically-discovered dependencies. If
statement s1 is found to be dependent on statement s2, then
s1 will be put into s2’s partition (unless this would increase
s2’s partition size beyond some threshold). The authors re-
port runtimes, but we were able to compute speedup from
the provided data. These average 9.4× on 16 threads on two
trivial benchmarks handcrafted by the authors.

Albarghouthi et al’s parallel C analysis. [10] is query-
based (i.e., they do not compute a solution for the entire pro-
gram, only enough to answer a specific query). They frame
the analysis in terms of MapReduce [12], with a parallel map
phase and a sequential reduce phase. During the map phase,
multiple functions are analyzed intraprocedurally in parallel.
If a function call is encountered, then the call is enqueued to
be analyzed later. During the reduce phase, sequential de-
pendencies are accounted for. The process is repeated on
the enqueued function calls until a fixpoint is reached. They
achieve an average speedup of 3.71× on 8 hardware threads.

2.3 Problems with the DFA Approach for Parallelism
A number of the existing approaches to parallelizing anal-
ysis, as described above, require a CFG as input. For lan-
guages such as C and Fortran this is a reasonable assump-
tion; however, for a language like JavaScript it is not rea-
sonable at all. Javascript’s higher-order functions, prototype-
based inheritance, implicit type conversions and implicit ex-
ceptions, and other language features mean that a comput-
ing a useful CFG requires extensive, precise, and costly
analysis—the very kind of analysis we are trying to optimize
via parallelization.

In addition, the DFA approach itself can make it more dif-
ficult to see opportunities for parallelization. The traditional
formulation of DFA is inherently sequential. We observe that
equations (1) and (2) in Section 2.1 implicitly impose syn-
chronization points into the very definition of the analysis
itself, as they require multiple nodes to cooperate in order to
merge and propagate information between themselves. Syn-

chronization is (almost) unavoidable for a tractable analysis,
but the DFA framework makes it difficult to separate syn-
chronization out as a separate concern from the analysis it-
self.

3. Designing for Parallelism
Our key insight is that by designing and implementing the
program analysis in a certain way, the design space of par-
allelization strategies becomes clearer and implementing the
parallelization strategies effectively becomes easier. In par-
ticular, we take advantage of an approach to program ana-
ysis based on abstract interpretation which we call STSO;
this approach divides the analysis into two separate compo-
nents: an embarrassingly parallel reachability computation
on a state transition system, and a strategy for selectively
merging states during that reachability computation. We de-
scribe this program analysis approach below, and then dis-
cuss the parallelism design space exposed by this anaysis
perspective.

3.1 The STSO Approach to Program Analysis
The basis for the STSO approach to program analysis is de-
scribed in [16]; we summarize the approach in this section.
Note that everything in this section refers to a completely
sequential definition of program analysis; there is no par-
allelism. Fundamentally, the STSO model specifies a static
analysis in two parts: (1) the underlying analysis itself, de-
scribed as a state transition system (STS); and (2) a strat-
egy for when to merge states together, used to bound the
reachable state space while maintaining the soundness of the
analysis.5 The solution to the analysis is the set of reach-
able states in the STS from some given initial state; the state
merging strategy specifies the control flow sensitivity of the
analysis, i.e., its path-, flow-, context-, and heap-sensitivity.
Thus, the analysis and its sensitivity are treated as two sep-
arate and independent concerns. The key insight of this pa-
per, as opposed to [16], is that this separation of concerns
can greatly benefit parallelism in a way described in later
sections of this paper.

An abstract machine-based smallstep operational seman-
tics is a useful way to describe a static analysis [31], and
can easily be seen as a STS. Such a semantics defines a no-
tion of abstract state (e.g., a program point together with
the current abstract values of all variables in scope at that
program point) and a set of transition rules that uses the se-
mantics of the program statement at that program point to
map an abstract state to a new abstract state. For example,
if the abstract state is 〈pp3, [x 7→ 1]〉 and the statement at
program point 3 is “x += 1”, then the next state would be
〈pp4, [x 7→ 2]〉. The exact definition of an abstract state and
the transition rules would vary depending on the language
being analyzed and the analysis being defined. Without go-

5 As described in [16] this strategy is a widening operator O in the abstract
interpretation sense.

ing into details on the exact state definition and transition
rules for a particular language and analysis, we can formal-
ize this idea as the following:

ς̂ ∈ Σ] abstract states

F] ⊆ Σ] × Σ] transition relation

The abstract states form a lattice L = (Σ],v,u,t), where
v is the ordering relation, u is the meet operator, and t is the
join operator. The solution to the program analysis is defined
as the least fixpoint (lfp) of the abstract semantics from some
set of initial states Σ

]

I
. Define the operator ·̊ so that for set S

and any function on sets F , F̊ (S) = S ∪ F (S). Then the
analysis solution ~P�] for program P is defined by:

~P�] = lfp
Σ
]
I

F̊]

An operational view of this least fixpoint definition is as
a worklist algorithm: it initializes the worklist with the states
in Σ

]

I
, then iteratively it (1) removes the current states from

the worklist; (2) applies F] to them to get a set of new states;
(3) filters out any states it has seen already; and (4) puts the
remaining states into the worklist. This continues until the
worklist is empty, at which point it has computed the entire
set of possible states, thus concluding the program analysis.

However, the analysis as defined is intractable (in fact,
potentially uncomputable). The issue is control-flow, specif-
ically, the nondeterministic choices that must be made be-
cause of the analysis’ over-approximations: which branch of
a conditional should be taken, whether a loop should be en-
tered or exited, which (indirect) function should be called,
etc. The number of abstract states grows exponentially with
the number of nondeterministic choices, and is potentially
unbounded. We must extend the analysis to control this be-
havior.

Therefore, we apply a widening operator O to the analysis
which bounds the abstract state space by selectively merging
abstract states, thus losing precision but making the analysis
tractable. This widening operator will, at each step of the fix-
point computation: (1) partition the current set of reachable
states into disjoint sets; (2) for each partition, merge all of the
abstract states in that partition into a single abstract state that
over-approximates the entire partition; (3) union the result-
ing abstract states together into a new set that contains only a
single abstract state per partition. This allows us to limit the
number of states by fixing a particular number of partitions.
By defining different strategies for partitioning the abstract
states, we can control how states are merged and thus control
the precision and performance of the analysis. As shown in
[16], this partitioning strategy is actually synonymous with
the analysis control flow sensitivity.

Operationally, this means that we modify the worklist al-
gorithm so that it maintains a memoization table with one
entry (i.e., abstract state) per partition. At each step the algo-
rithm selects a state from the worklist, uses F] to compute a

new set of states, merges them into the appropriate partition
entries using O, and if any of those partition entries have
changed due to the newly-merged information, adds them
back into the worklist. In pseudocode, this operational view
of the STSO model looks like the following:

Algorithm 1 The sequential worklist algorithm
put the initial abstract state ς̂0 on the worklist
initialize map memo : Partition→ Σ] to empty
repeat

remove an abstract state ς̂ from the worklist
for all abstract states ς̂′ in next states(ς̂) do

if memo does not contain partition(ς̂′) then
memo(partition(ς̂′)) = ς̂′

put ς̂′ on worklist
else
ς̂old = memo(partition(ς̂′))
ς̂new = ς̂old t ς̂

′

if ς̂new , ς̂old then
memo(partition(ς̂′)) = ς̂new
put ς̂new on worklist

end if
end if

end for
until worklist is empty

The next states function applies the state transition
rules to determine the next abstract state(s) reachable from
the given abstract state—this entails the computational core
of the analysis logic. The partition function maps an ab-
stract state to its partition as defined by the state merging
strategy. The algorithm computes the analysis fixpoint ex-
actly as described earlier.

3.2 Parallelism Design Space
The STSO program analysis model provides a useful per-
spective for parallelizing analysis, because it boils the prob-
lem down to two questions: (1) what strategy should we use
to merge states during the reachability computation (thus
injecting synchronization points); and (2) what granularity
should we use to parallelize the reachability computation it-
self?

Recall that the state merging strategy is synonymous with
the flow- and context-sensitivity of the analysis—merging
fewer states means greater sensitivity and thus greater pre-
cision, while merging more states means less sensitivity and
thus less precision. With respect to parallelization, there is a
tradeoff between merging strategies that merge fewer states
(reducing synchronization but increasing the number reach-
able states), versus strategies that merge fewer states (in-
crease synchronization but reducing the number of reachable
states). We explore a small part of this space in our evalua-
tion, however, there is interesting future work in exploring
this trade-off further.

Besides state merging, the remaining question is granu-
larity, which we explore in the rest of this section. We first
discuss an obvious point in this space, the worklist-parallel
strategy, and why it is not a satisfactory solution. We then in-

troduce a novel point in this space, the per-context strategy,
that has not been explored before.

Worklist-Parallel Strategy. The most straightforward gran-
ularity strategy is to parallelize the worklist loop by process-
ing each node on the worklist in parallel. In essence, we
explore the reachability of each node independently until
the various states reach some merge point specified by the
merge strategy (but not necessarily the same merge point for
all states), whereupon the merged states are inserted back
into the global worklist for the process to be repeated. The
pseudocode of the analysis for this strategy looks like the
following:

Algorithm 2 The worklist parallel algorithm
put the initial abstract state ς̂0 on the worklist
initialize templist to empty
initialize map memo : Partition→ Σ] to empty
repeat

for all abstract states ς̂ in the worklist do in parallel
for all abstract states ς̂′ in next states(ς̂) do

begin thread-safe
if memo does not contain partition(ς̂′) then
memo(partition(ς̂′)) = ς̂′

put ς̂′ on templist
else
ς̂old = memo(partition(ς̂′))
ς̂new = ς̂old t ς̂

′

if ς̂new , ς̂old then
memo(partition(ς̂′)) = ς̂new
put ς̂new on templist

end if
end if

end thread-safe
end for

end parallel for
swap worklist and templist

until worklist is empty

The thread-safe block is run atomically using synchroniza-
tion primitives.

There are three major drawbacks to this strategy. First, it
can cause a great deal of redundant computation because of
node ordering issues (as described in Section 2.1). If multi-
ple states are being processed in parallel but one subsumes
the others, then the parallel computations are not actually
useful and there is no gain in performance. Second, all of the
parallel computations must be synchronized together, even
those that reach different merge points (and hence are inde-
pendent). This is because the analysis doesn’t know which
threads will reach which merge points, and thus must wait
until all threads reach some merge point before it can con-
tinue at any one merge point. Finally, this strategy introduces
a large number of short-lived threads, which can be detri-
mental to performance.

Per-Context Parallel Strategy. We propose a novel point
in the granularity design space based on function con-
texts, one that attempts to address some of the issues of
the worklist-parallel strategy and is motivated by empirical
observation. We want to reduce node ordering issues, limit

synchronization between independent parts of the analy-
sis, and increase the granularity of the thread computations.
Context-sensitive analyses have desirable properties which
can be exploited for these goals. Context-sensitive analy-
ses clone functions based on some notion of abstract calling
context (the exact definition of “context” defines the partic-
ular type of context-sensitivity used by the analysis). Each
clone is specialized to a particular context and, most im-
portantly, analyzed separately. Different clones can be an-
alyzed in parallel, while analysis of a single clone can be
done sequentially. This strategy allows a more optimal node
ordering, because within each context we can sequentially
analyze nodes in reverse postorder (the best possible node
ordering). Different contexts are independent of each other,
which limits synchronization. Finally, threads now compute
an entire function rather than a single statement or basic
block, increasing work granularity per thread and reducing
thread management overhead. The pseudocode of the analy-
sis using this strategy is as follows:

Algorithm 3 The per-context parallel algorithm
procedure analysisThread(ctxt)

move abstract states from backlog(ctxt) to worklist
repeat

remove an abstract state ς̂ from the worklist
for all abstract states ς̂′ in next states(ς̂) do

if context(ς̂′) , ctxt then
process(context(ς̂′), ς̂′)

else if memo does not contain partition(ς̂′) then
memo(partition(ς̂′)) = ς̂′

put ς̂′ on worklist
else
ς̂old = memo(partition(ς̂′))
ς̂new = ς̂old t ς̂

′

if ς̂new , ς̂old then
memo(partition(ς̂′)) = ς̂new
put ς̂new on worklist

end if
end if

end for
until worklist is empty
if backlog(ctxt) is empty then

mark this thread as potentially done
else
analysisThread(ctxt)

end if
end procedure

procedure process(ctxt, ς̂)
begin thread-safe

enqueue ς̂ into backlog(ctxt)
if no thread corresponding to ctxt is running then
analysisThread(ctxt)

end if
end thread-safe

end procedure

procedure main
initialize map memo : Partition→ Σ] to empty
analysisThread(context(ς̂0))

end procedure

In the above algorithm, a unique thread is used to run
analysisThread per context. The global map backlog maps
each context to a synchronized queue, while worklist is

local to each thread. The function context extracts the con-
text under which an abstract state needs to be analyzed. Note
that no synchronization is required on access to memo (be-
cause each thread is run sequentially and multiple threads
do not access same parts of memo). The procedure process
checks if no thread corresponding to context is running,
which can happen under two circumstances: (1) the context
has never been seen before, thus a new thread is used to run
analysisThread with that context (2) the thread correspond-
ing to the context has marked itself as potentially done, in
which case the thread is unmarked and woken up back again
to run analysisThread. The analysis begins by calling main,
and the analysis ends when each of the threads mark them-
selves as potentially done and each of the backlog queues
are empty.

While a per-context strategy has been previously men-
tioned in the literature [15], to our knowledge this is the first
time it has ever been detailed and implemented. Addition-
ally, thanks to the STSO representation of the analysis, us-
ing the per-context strategy is simple. Instead of a global
worklist, use one worklist per context encountered during
the analysis. Each worklist has a dedicated thread computing
a fixpoint. When a thread processes a function call leading
to a new context, it passes the resulting state on to the ap-
propriate thread and continues processing its own worklist.
The only synchronization required is this thread communica-
tion. When all worklists are empty, the analysis has reached
a global fixpoint.

4. Parallel JavaScript Analysis
In this section we briefly describe the JavaScript language
and the existing sequential JavaScript analysis that we
adapted for our parallel analysis. We then describe the mod-
ification to that sequential analysis necessary to implement
our parallel analysis design.

4.1 JavaScript Features
JavaScript is an imperative, dynamically-typed language
with objects, prototype-based inheritance, higher-order func-
tions, implicitly applied type-conversions, and exceptions.
JavaScript programs only have two scopes (global scope and
function scope), though variables and functions are allowed
to be defined anywhere; these declarations (but not the cor-
responding initializations, except for functions) are automat-
ically hoisted to the appropriate scoping level. JavaScript is
designed to be as resilient as possible: when a program per-
forms some action that doesn’t make sense (e.g., accessing a
property of a non-object, or adding a boolean and a function
together) JavaScript uses implicit conversions and default
behaviors when possible in order to continue the execution
without errors rather than raising an exception.

Objects are the fundamental JavaScript data structure.6

Object properties can be dynamically inserted and deleted,
and when performing a property access the specific prop-
erty being accessed can be computed at runtime. JavaScript
features such as the for..in loop and the in operator al-
low for reflective introspection of an object’s contents. Ob-
ject inheritance is handled via delegation: when accessing a
property that is not present in a given object obj, the property
lookup algorithm determines whether obj has some other ob-
ject proto as its prototype; if so then the lookup is recursively
propagated to proto.

These features have two important implications for static
analysis: (1) computing a precise CFG requires careful and
costly analysis, because higher-order functions, prototype-
based inheritance, implicit type-conversions, and implicit
exceptions make control-flow non-obvious, thus analysis
techniques based on the CFG are problematic; and (2)
JavaScript’s inherent dynamism means that high precision
is important to get useful results, implying that any useful
analysis will be expensive.

4.2 Sequential JSAI
We build on an existing sequential abstract interpreter for
JavaScript called JSAI [21]. The analysis performs type in-
ference, control-flow analysis, pointer analysis, and numeric,
string, and boolean value analysis. JSAI is designed and
implemented as an abstract machine-based smallstep oper-
ational semantics, which can be thought of as a state transi-
tion system. Rather than baking in a specific flow-, context-,
and heap-sensitivity strategy, JSAI is designed around the
STSO model in order to have configurable control flow sen-
sitivity [16]: the basic analysis computes the reachable states
of the STS defined by the abstract semantics, while a sepa-
rate modular component determines a strategy for selectively
merging states. States are represented as tuples holding rel-
evant components such as the values on the stack and heap,
the current continuation, and a trace recording the execution
history. The set of states forms a lattice; states are merged
using the lattice join operator which operates pointwise on
the state components. The choice of which states to merge
and when is determined by JSAI’s merging strategy, which
can be chosen independently from the rest of the analysis. A
given merging strategy determines the flow-, context-, and
heap-sensitivity of the analysis; indeed, merging strategies
and sensitivities are synonymous.

JSAI is formally specified and the code is designed to
have a close correspondence with the formalisms, using
immutable states and written using mostly pure functional
style, making it easy to follow and manipulate. Alternatively,
we could have used TAJS [17–19], a competing sequential
JavaScript analysis framework, whose runtimes are in the
same order of magnitude as JSAI (between 0.3× and 1.8×).

6 Even functions and arrays are just special kinds of objects, and can be used
in the same ways as other objects.

However, TAJS does not use the STSO model, does not offer
configurable sensitivity, and lacks a formal specification.

4.3 Parallelism Strategies
We implement two specific parallelism strategies as dis-
cussed in Section 3: the worklist-parallel strategy and the
per-context strategy. We describe for each one the necessary
changes to JSAI, which were minimal in both cases. Our
experience is that implementing different strategies is a sim-
ple task, making it easy to explore the design space of the
STSO model. For each strategy we use a single global thread
pool [1] of a fixed size and create new thread tasks for the
pool on demand. We also replace JSAI’s memoization table
(which holds the computed solution as the analysis executes,
mapping program points to the abstract states computed at
that program point so far) with a thread-safe version that re-
quires no locking for table lookups [2].

Worklist-Parallel Strategy. This strategy is the simplest to
implement. Rather than iteratively popping elements off of
the worklist and processing them sequentially, instead we
pop all elements of the worklist and process each element
in parallel, having them enqueue the resulting abstract states
back onto the global worklist. This strategy is, in concept,
the same strategy used by Dwyer et al [14], and we imple-
ment it to use as a comparison point for our novel proposed
strategy given below.

Per-Context Parallel Strategy. We observe that for the
JavaScript benchmarks we have tested, if N states are on a
non-empty worklist, and those N states are members of M
contexts (where 1 ≤ M ≤ N), then typically M >> 1. In
other words, many contexts are typically enqueued for pro-
cessing at once. This indicates that the per-context strategy
described in Section 3 has promise for anayzing JavaScript.
Instead of a global worklist, we use one worklist per con-
text, with one thread for each worklist. Each worklist has
an associated non-blocking, lock-free [3] backlog queue that
other threads use to enqueue work for that thread; whenever
a thread runs out of elements in its worklist, it puts its back-
log queue into its worklist and continues. When a thread
processes a function call that belongs to a new context, it
puts the resulting abstract state into that context’s backlog
queue. The analysis has reached a fixpoint when all work-
lists and backlog queues are empty. The memoization table
is global; because contexts are independent from each other,
there will never be a conflict between threads when updat-
ing the memoization table. We also tried an alternative to the
backlog queue strategy for thread communication, wherein
threads directly enqueued work into other threads’ worklists;
we saw results ranging from 30% faster to 18% slower per-
formance relative to the backlog queue implementation, with
most benchmarks being slower; thus we only use the back-
log queue implementation in our evaluation.

5. Evaluation
We evaluate our parallel JSAI implementation using a set of
real-world JavaScript benchmarks, detailed in Section 5.2.
We decribe the benchmarks and our experimental method-
ology, then present and discuss our results for the worklist-
parallel strategy and the per-context strategy.

5.1 Experimental Methodology
System Under Test. Our testbed is equipped with two 6-
core Intel Xeon processors running at 1.9 Ghz with hyper-
threading enabled. We only report data for 1-12 threads, with
one thread per core. While utilizing hyperthreading with 13-
24 threads usually did yield better speedups, these tended
to be minimal and with high variability. The machine is
equipped with a total of 32 GB of memory, and we ran
with a maximum JVM heap size of 25,600 MB for all ex-
periements. During the course of the experiments, we had
exclusive access to the machine, and all non-essential ser-
vices were disabled.

Calculating Speedups. The speedups we report are rela-
tive to the sequential JSAI implementation, as per the usual
definition of speedup. This is an important point for com-
paring against related work. In several cases, authors have
instead focused on runtimes [32], speedups relative to the
framework itself [24, 25, 27], percent improvement in per-
formance [23], or atypical presentations of speedups [28].

Configuration Focus. Previous experiments [21] have
shown that stack-based CFA tends to work well for JavaScript,
both in terms of precision and performance. We specifically
use stack-k-h CFA, in which the top k callsites on the call
stack are used as the context (this is the standard “callstring
context sensitivity” used in DFA). The parameter h controls
the heap sensitivity, which distinguishes each abstract object
allocation by a context of depth h, in addition to its program
location. We show results for stack-5-4 (most precise),
stack-3-2, and stack-1-0 (least precise) for comparison.

Testing. In order to test the correctness of our implementa-
tion, we annotated the benchmarks with special statements to
print out the final abstract values for certain program points.
In all cases, the solutions from our parallel implementation
were equivalent to the solutions produced by the sequential
interpreter. In addition, we ran several hundred handcrafted
tests on both the sequential and parallel analyzers to com-
pare their results; in all cases they agree.

5.2 Benchmarks
We focus on ECMA3-compliant JavaScript programs which
do not exercise the document object model (DOM). While
SunSpider and other concrete performance benchmark suites
meet the above criteria, most of their constituents complete
analysis within seconds. Given that short-running bench-
marks can be improved little by the addition of parallelism,
such benchmarks have been omitted from our evaluation.

In an attempt to derive more complex benchmarks which
are more time-consuming for our analysis to handle, we have
turned to open source JavaScript programs in the wild. This
allows us to benchmark against a more realistic suite. Ad-
ditionally, we have intentionally selected benchmarks rep-
resenting a variety of coding styles, with both imperative
and functional code. This allows us to determine whether or
not our parallel analysis performance is dependent on coding
style, which is important considering that JavaScript allows
for very different styles to be used and to coexist. A complete
description of our benchmark suite is given in Table 1.

5.3 Worklist-Parallel Results
The performance results for the worklist-parallel strategy on
the configurations stack-1-0, stack-3-2 and stack-5-4
in Figures 1(a), 1(b), and 1(c). Under stack-1-0, most
benchmarks barely even reach a 2× speedup, though linq
aggregate and linq functional manage to cross this
bound by a small margin. With stack-3-2, the distance be-
tween the combination of linq aggregate and linq fun-
ctional and the rest of the benchmarks begins to increase,
as both comfortably break a 3× speedup. Another point of
interest is that linq aggregate and linq functional are
fairly comparable in terms of performance, whereas under
stack-1-0 linq functional outperformed linq aggre-
gate by a significant margin.

It is under stack-5-4 that the worklist-parallel re-
sults show real promise with the linq aggregate and
linq functional benchmarks. linq aggregate outper-
forms linq functional, in contrast with the behavior
underneath stack-1-0. Moreover, both these benchmarks
show superlinear speedup for less than 10 hardware threads.
The superlinear speedup seems to be the result of two fac-
tors. First, both the linq aggregate and linq functional
benchmarks are highly functional in implementation style,
containing more than one function per ten lines of code.
Moreover, many of these functions are used in a higher-
order style, are largely independent of each other, and are of
small to moderate length. Intuitively, this leads to many con-
texts of a granularity level well-suited to parallel processing.
Second, node ordering is also probably a factor. The sequen-
tial analyzer enforces an arbitrary, possibly far-from-optimal
ordering between states in different contexts (it uses reverse
post-order within a context, but without the results of the
analysis it isn’t possible to order between contexts). It is
possible that our worklist-parallel implementation just hap-
pens to choose better node orderings on these benchmarks.
The somewhat erratic nature of our speedup curves serves
as further evidence of these ordering issues. It is unclear
how to measure the effects of ordering in a structured way,
therefore, we do not have any experiments that can backup
our conjecture. There are many examples from the literature
where either superlinear or otherwise better than predicted
performance has been recorded [10, 14, 15, 24], and differ-
ent node orderings were commonly cited as the reason.

(a) Worklist-parallel speedups for stack-1-0 (b) Worklist-parallel speedups for stack-3-2

(c) Worklist-parallel speedups for stack-5-4 (d) Per-context parallel speedups for stack-1-0

Figure 1: Speedups for our per-context parallel and worklist-parallel implementations on various traces. The number of
hardware threads used is on the x axis, and the speedup is on the y axis.

(a) Per-context parallel speedups for stack-3-2 (b) Per-context parallel speedups for stack-5-4

Figure 2: Speedups for our per-context parallel implementations on configurations stack-3-2 and stack-5-4. The number
of hardware threads used is on the x axis, and the speedup is on the y axis.

(a) Average no. of available contexts for stack-5-4 on the worklist-
parallel implementation

(b) Average ratio of the no. of available states to the no. of available
contexts for stack-5-4 on the worklist-parallel implementation

Figure 3: Graphs to test the hypotheses presented in Section 5.5.

Benchmark Derived From General Kind Number of Functions LOC Sequential Runtime
Under stack-5-4 (s)

cryptobench [4] (SunSpider origin) imperative 132 1699 508.082
md5 [5] imperative 37 365 778.061
buckets [6] mixed 168 2472 73.801
numbers [7] mixed 90 1870 145.082
jsparse [8] functional 74 878 515.239
linq action [9] functional 381 2783 32.097
linq aggregate [9] functional 396 2830 80722.088
linq functional [9] functional 378 2790 4516.588

Table 1: A summary of our benchmark suite. The linq* benchmarks all execute different APIs from the same common library
in a manner that causes vastly different code paths to be analyzed between the three benchmarks. Benchmarks of the mixed
kind have both imperative and functional characteristics based on subjective observation.

In stark contrast to the excellent speedups of linq aggregate
and linq functional on stack-5-4, the rest of the
benchmarks see rather dismal performance. No other bench-
mark was able to reach a speedup higher than 1.45×, ir-
respective of the number of hardware threads used. This
implies that for these benchmarks, the worklist-parallel ap-
proach duplicates a significant amount of work. One ex-
ception to this seems to be linq action, which was de-
rived from the same codebase as linq aggregate and
linq functional. Given that linq action has a fairly
short sequential runtime at around 32 seconds, it seems that
it is simply too short to see much improvement from the
worklist-parallel strategy.

5.4 Per-Context Parallel Results
Speedups for the per-context parallel implementation with
our stack-1-0 trace on our benchmark suite are shown in
Figure 1(d). Once again, linq aggregate and linq functional
stand out, unconditionally showing higher speedups in all
cases than any other benchmark. Moreover, both bench-
marks show superlinear behavior for less than 10 hardware
threads, presumably for the same reasons as detailed in the
previous section. Of particular interest is that based on the
performance results, it appears that there are three buck-
ets in which data can be distributed based on their relative
performance to each other. This bucketing shows that func-
tional programs tend to perform better than non-functional
programs, with all of our functional benchmarks being ei-
ther in the top-performing or moderate-performing bucket.
However, this is not to say that non-functional programs can
not perform well; the moderately-performing bucket holds
cryptobench, a highly imperative benchmark.

With the trend of functional programs generally perform-
ing better, speedups underneath stack-3-2 in Figure 2(a)
and stack-5-4 in Figure 2(b) are particularly interesting.
These speedups do not illustrate the same sort of buck-
ets as seen with stack-1-0 in Figure 1(d). However, the
linq aggregate and linq functional benchmarks both
show superlinear speedup, with linq aggregate seeing
speedups higher than 34× on 10 cores. linq aggregate
shows strong evidence that node ordering is to blame, given

the sudden drop in performance at 8 hardware threads
under stack-5-4. It seems likely that the sequential in-
terpreter chooses a particularly poor context ordering for
linq aggregate underneath the stack-5-4 trace.

This same sort of performance drop is also seen with
the numbers benchmark underneath stack-5-4 and md5
underneath stack-3-2. The md5 benchmark underneath
stack-3-2 is especially interesting, considering the sever-
ity of the drop at 5 hardware threads and the fact that its
performance never improves after this drop. It seems likely
that in this case, certain well-performing context orderings
are commonly available for thread schedules involving 5 or
less threads. However, after this point, poor context order-
ings become far more likley. As such, context ordering plays
a significant role, even for the parallel abstract interpreter.

5.5 Discussion of Per-Context Granularity
As shown by our speedup results in Figures 1(d), 2(a)
and 2(b) our per-context granularity tends to yield decent
speedup results. However, we have found evidence that even
better levels of granularity exist for JavaScript, at least on
a theoretical level. One would expect that if context-level
granularity were the best level of granularity, then the fol-
lowing two propositions would be true:

1. As the number of available contexts increase, so do the
speedups in the per-context parallel implementation, be-
cause there would be more opportunity for parallelism.

2. As the number of distinct contexts decrease and the over-
all number of states increase, the worklist-parallel ap-
proach becomes less successful. In other words, if the
majority of states share the same few contexts, then the
worklist-parallel speedups decrease. This follows from
the assumption that states within the same context tend
to be dependent on each other, and so processing many
states in the same context in parallel would yield lots of
wasted work.

We gathered data to test these propositions, and found
that these tend not to be true. As shown in Figure 3(a),
number of available contexts is only roughly correlated to
the speedup of the per-context parallel implementation.

Figure 3(b) shows for each parallel program step in the
worklist-parallel implementation, the ratio of total number
of available states over the number of states with distinct
contexts. It is expected that as this number becomes higher,
more and more states are dependent on each other, and so
the amount of lost work increases in the worklist-parallel
implementation. However, there appears to be no correlation
between how high or low a ratio is and how well or poor the
worklist-parallel implementation performed.

Given that these propositions appear to be untrue, there
likely exists an even better level of granularity for our
JavaScript benchmarks, or at least a level that piggybacks
off of our per-context granularity. An advantage of the STSO
approach is that it exploring new parallelisation strategies
to find these hypothetical improvements is relatively easy,
because of way the analysis is structured.

6. Conclusions
We have presented a alternative program analysis model to
the more usual DFA approach, called STSO. This frame-
work makes it easy to reason about and explore different
parallelization strategies, as well as being more applicable
than DFA to languages with difficult control-flow that make
the program CFG hard to compute. Using this framework
we have implemented a parallel analysis for JavaScript and
explored two points in the parallel design space: a naive
worklist-parallel strategy and a novel per-context strategy.
Our results show that our parallel implementation provides
speedups comparable or better than the speedups reported in
our related work for realistic JavaScript programs.

Acknowledgments
NSF CCF-1319060 and CCF-1117165 supported this work.

References
[1] http://docs.oracle.com/javase/7/docs/api/java/
util/concurrent/ExecutorService.html.

[2] http://docs.oracle.com/javase/6/docs/api/java/
util/concurrent/ConcurrentHashMap.html.

[3] http://docs.oracle.com/javase/6/docs/api/java/
util/concurrent/ConcurrentLinkedQueue.html.

[4] http://octane-benchmark.googlecode.com/svn/
latest/crypto.js.

[5] https://github.com/blueimp/JavaScript-MD5.
[6] https://github.com/mauriciosantos/buckets.
[7] http://github.com/sjkaliski/numbers.js.
[8] https://github.com/doublec/jsparse.
[9] http://linqjs.codeplex.com/.

[10] A. Albarghouthi, R. Kumar, A. V. Nori, and S. K. Rajamani.
Parallelizing top-down interprocedural analyses. In ACM SIG-
PLAN Conference on Programming Languages Design and
Implementation (PLDI), 2012.

[11] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. The astrée analyzer. In Euro-
pean Symposium on Programming (ESOP), 2005.

[12] J. Dean and S. Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. In USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), 2004.

[13] M. B. Dwyer and L. A. Clarke. Data flow analysis for
verifying properties of concurrent programs. In ACM SIG-
SOFT Symposium on the Foundations of Software Engineer-
ing (FSE), 1994.

[14] M. B. Dwyer and M. Martin. Practical parallelization: Expe-
rience with a complex flow analysis. Technical Report KSU
CIS TR 99-4, Kansas State University, 1999.

[15] M. Edvinsson, J. Lundberg, and W. Löwe. Parallel points-to
analysis for multi-core machines. In International Conference
on High Performance and Embedded Architectures and Com-
pilers (HiPEAC), 2011.

[16] B. Hardekopf, B. Wiedermann, B. Churchill, and V. Kashyap.
Widening for control-flow. In International Conference
on Verification, Model-Checking, and Abstract Interpretation
(VMCAI), 2014.

[17] S. H. Jensen, P. A. Jonsson, and A. Møller. Remedying the
Eval that Men Do. In International Symposium on Software
Testing and Analysis, 2012.

[18] S. H. Jensen, A. Møller, and P. Thiemann. Type Analysis
for Javascript. In International Symposium on Static Analysis,
2009.

[19] S. H. Jensen, A. Møller, and P. Thiemann. Interprocedural
Analysis with Lazy Propagation. In International Symposium
on Static Analysis, 2010.

[20] J. B. Kam and J. D. Ullman. Monotone data flow analysis
frameworks. Acta Informatica, 7:309–317, 1977.

[21] V. Kashyap, K. Dewey, E. Kuefner, J. Wagner, K. Gibbons,
J. Sarracino, B. Wiedermann, and B. Hardekopf. JSAI: A
static analysis platform for javascript. In ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (FSE),
2014.

[22] G. A. Kildall. A unified approach to global program optimiza-
tion. In Symposium on Principles of Programming Languages
(POPL), 1973.

[23] W. Le and M. L. Soffa. Parallel path-based static analysis.
Technical Report CS-2010-6, University of Virginia, 2010.

[24] Y.-F. Lee and B. G. Ryder. A comprehensive approach to
parallel data flow analysis. In ACM SIGARCH International
Conference on Supercomputing (ICS), 1992.

[25] Y.-F. Lee, B. G. Ryder, and T. J. Marlowe. Experiences with
a parallel algorithm for data flow analysis. The Journal of
Supercomputing, 1991.

[26] M. Méndez-Lojo, M. Burtscher, and K. Pingali. A gpu im-
plementation of inclusion-based points-to analysis. In ACM
SIGPLAN Symposium on Principles and Practices of Parallel
Programming (PPoPP), 2012.

[27] M. Méndez-Lojo, A. Mathew, and K. Pingali. Parallel
inclusion-based points-to analysis. In ACM International
Conference on Object Oriented Programming Systems Lan-
guages and Applications (OOPSLA), 2010.

[28] D. Monniaux. The parallel implementation of the astrée static
analyzer. In Asian Symposium on Programming Languages
and Systems (APLAS), 2005.

[29] V. Nagaraj and R. Govindarajan. Parallel flow-sensitive
pointer analysis by graph-rewriting. In International Confer-
ence on Parallel Architectures and Compilation Techniques,
2013.

[30] B. G. Ryder and M. C. Paull. Elimination algorithms for data
flow analysis. ACM Computing Surveys (CSUR), 1986.

[31] D. Van Horn and M. Might. Abstracting abstract machines.
In ACM SIGPLAN International Conference on Functional
Programming. ACM, 2010.

[32] S. Weeks, S. Jagannathan, and J. Philbin. A concurrent ab-
stract interpreter. Lisp and Symbolic Computation, 1994.

