
Supplementary Material on “Translating C to Safer Rust”

MEHMET EMRE, University of California Santa Barbara, USA
RYAN SCHROEDER, University of California Santa Barbara, USA
KYLE DEWEY, California State University Northridge, USA
BEN HARDEKOPF, University of California Santa Barbara, USA

This document gives more detail into the translation method in our paper “Translating C to Safer Rust” to
appear in PACMPL, OOPSLA issue on October 2021. We give an introduction to Rust’s ownership system,
followed by a precise list of the rewrite rules used by the lifetime resolution algorithm. Finally, we give two
code snippets to (1) complete the example used in the paper, and (2) to show an example of borrow conflicts
mentioned in the paper.

Additional Key Words and Phrases: Rust, C, Automatic Translation, Memory-Safety, Empirical Study

This document supplements “Translating C to Safer Rust” [Emre et al. 2021]. The following sections
contain (1) a description of Rust’s ownership system, (2) detailed rewrite rules used in ResolveLife-
times (see Section 3 of [Emre et al. 2021]), (3) a snippet from the bzip2 corpus program showing a
borrow conflict that is resolved by promoting the related references to raw pointers, and (4) the
full version of the running example from the paper after all steps of our method are applied.

1 RUST’S OWNERSHIP SYSTEM
This section serves a short primer to how Rust handles ownership and borrowing. Both of these
features are central to Rust’s memory model, and enable it to statically ensure memory safety in
safe code without resorting to garbage collection at runtime. Given that our work must work with
Rust’s memory model closely, it is necessary to have some understanding of Rust’s memory model
in order to understand the significance of our own work. That said, this section is intended only as
a quick introduction; readers curious for more details are directed to the online Rust book for basics
[Klabnik and Nichols 2018], as well as as a more formal alias-based formulation at [Matsakis 2018].

1.1 Motivation
Rust’s memory model ensures memory safety statically, without resorting to potentially expensive
runtime memory management techniques like garbage collection. In Rust, well-typed programs
are memory-safe by construction. As with a garbage collected language, users explicitly perform
memory allocation, but do not explicitly perform deallocation. Unlike with garbage collection,
the Rust compiler statically inserts routines to deallocate heap-allocated memory when it is no
longer needed. The type system of Rust is designed in such a manner that the compiler statically

Authors’ addresses: Mehmet Emre, emre@cs.ucsb.edu, University of California Santa Barbara, Santa Barbara, CA, USA;
Ryan Schroeder, rschroeder@ucsb.edu, University of California Santa Barbara, Santa Barbara, CA, USA; Kyle Dewey,
kyle.dewey@csun.edu, California State University Northridge, Northridge, CA, USA; Ben Hardekopf, benh@cs.ucsb.edu,
University of California Santa Barbara, Santa Barbara, CA, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).
XXXX-XXXX/2021/9-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: September 2021.

HTTPS://ORCID.ORG/0000-0001-8744-6459
HTTPS://ORCID.ORG/0000-0002-7998-3104
https://orcid.org/0000-0001-8744-6459
https://orcid.org/0000-0002-7998-3104
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf

knows exactly where these memory deallocations need to be performed. This knowledge of when
to perform deallocation is based around ownership.

1.2 Ownership
By default, data is said to be owned in Rust. For example, consider the following function definition
f, which uses type Vec from the Rust standard library (representing a vector):
1 fn f(v: Vec <i32 >) {}

f is said to take ownership of v. This is indicated by the fact that v is directly of type Vec<i32>.
Whoever owns the data is ultimately responsible for deallocating any heap-allocated data held.
Deallocation implicitly occurs whenever the variable bound to the data falls out of scope. With this
in mind, any heap-allocated data held in v is deallocated immediately after the call to f, as v will
no longer be accessible.

Within a scope, ownership can be transferred from one variable to another. For example, consider
the following code snippet:
1 fn example () {

2 let v1 = vec![1, 2, 3]; // creates a vector holding 1, 2, 3

3 let v2 = v1;

4 }

In this case, v1 initially holds the underlying vector. Ownership is then transferred to variable v2.
Because ownership is never transferred away from v2, v2 will have all heap-allocated memory
deallocated at example’s termination. Because ownership was transferred away from v1, there is
no similar deallocation performed for v1, beyond typical stack deallocation of v1.

Ownership can also be transferred between scopes. For example, consider the following:
1 fn identity(v: Vec <i32 >) -> Vec <i32 > { return v; }

In this case, like the prior f example, identity takes ownership over v. However, because identity
later returns v, it transfers ownership to identity’s caller. Any heap-allocated memory bound to
v then becomes the concern of identity’s caller.

1.3 Borrowing and Lifetimes
While the ownership model unambiguously allows the compiler to safely statically deallocate all
heap-allocated memory, it is nonetheless very restrictive. For example, if you wanted to define a
function that merely printed the contents of a vector, it would need to transfer ownership back to
the caller. This would mean having an unintuitive type signature like:
1 fn print_all(v: Vec <i32 >) -> Vec <i32 > { ... }

With this in mind, the more data a function needs to do its job, the more data the very same function
needs to return. There are also negative performance implications of ownership transfer, since
barring compiler optimizations, it entails copying any stack-allocated memory behind a variable.

To address these issues around ownership transfer, Rust also has a concept known as borrowing.
As the name suggests, data can be temporarily borrowed without changing ownership. Data is
borrowed through a reference, which bear similarity to references in other languages. Borrowed
data can be used like owned data, with some restrictions. One important restriction is that borrowed
data cannot outlive the actual data being borrowed. Using C/C++ terminology, Rust must ensure
that there are no dangling pointers to any allocated data.

To ensure that the underlying data being borrowed is always valid, Rust introduces the concept
of a lifetime. Lifetimes are type-level variables which abstractly define how long the underlying
data being borrowed will be in memory. For example, consider the following code:

, Vol. 1, No. 1, Article . Publication date: September 2021.

Supplementary Material on “Translating C to Safer Rust” 3

1 fn has_lifetime <'a>(v: &'a Vec <i32 >) { ... }

Instead of having ownership of v transferred to has_lifetime, this instead borrows the underlying
Vec<i32> for lifetime ’a. Rust will ensure that the underlying Vec<i32> is in memory for the
duration of the call to has_lifetime. Because has_lifetime merely borrows the Vec<i32>, there
is no memory deallocation of v performed; has_lifetime does not own the vector, and so it is not
has_lifetime’s responsibility to deallocate the vector.

Like regular type variables, data structure definitions themselves can take lifetimes, as with:
1 struct SomeData <'a, 'b> {

2 first: &'a i32 ,

3 second: &'b i32

4 }

With the above code in mind, Rust will make sure that no allocated instance of SomeData will
outlive anything it borrows. That is, the data referred to by first and second will always be in
memory at least as long as the SomeData data structure itself.

To show this in practice, consider the following example, which is rejected by the Rust compiler:
1 fn rejected () {

2 let the_data;

3 let first_int = 1;

4 {

5 let second_int = 2;

6 the_data = SomeData { first: &first_int , second: &second_int };

7 }

8 print!("{}'', *the_data.second);

9 }

The above code is rejected by the Rust compiler, with an error message stating that second_int does
not live long enough. To understand why, first understand that each block in Rust corresponds to a
separate lifetime variable. That is, an enclosing scope maps directly to object lifetimes. For speaking
purposes, the outer scope of rejected will be called ’a, and the inner scope (where second_int is
declared) will be called ’b. With this in mind, the_data has type SomeData<’a, ’b>, and it itself
has lifetime ’a. However, ’b does not live as long as ’a. As such, we have attempted to create a data
structure with a lifetime longer than its constituents, which is not permitted. As such, Rust rejects
the program. Thinking in terms of C/C++, this rejection makes sense - second_int is allocated on
the stack and subsequently deallocated after the_data is initialized, so the_data.second would
be a dangling pointer.

1.3.1 Restrictions. All borrows seen so far are immutable borrows, meaning that the underlying
object cannot be changed through these borrows. Furthermore, the underlying object may not
be changed at all while any immutable borrows are active. Similarly, Rust disallows ownership
transfers while any borrows are active. This can be statically checked at compile time, as shown in
the code below:
1 struct MyStruct {

2 first: i32

3 }

4
5 fn involves_borrows <'a>(datum: &'a MyStruct) -> &'a MyStruct {

6 return datum;

7 }

8 fn performs_transfer(x: MyStruct) {}

, Vol. 1, No. 1, Article . Publication date: September 2021.

4 Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf

9
10 fn main() {

11 let x = MyStruct { first: 42 };

12 let r = involves_borrows (&x);

13 performs_transfer(x);

14 print!("{}", r.first)

15 }

The above code fails to compile, as the the transfer performed by
performs_transfer is disallowed because reference r still refers to the same data structure. Specif-
ically, Rust tracks that x has an active borrow at the call to performs_transfer, disallowing the
call. As an aside, the subsequent use of r.first is required to get this code to compile, as this
forces the compiler to internally keep the borrow of x around after the call to performs_transfer;
effectively, Rust will permit the existence of a dangling pointer, but not the access of a dangling
pointer.

1.3.2 Immutable and Mutable Borrows. All prior borrow examples are based on immutable borrows,
meaning the underlying object cannot be changed through the borrow. Rust also supports mutable
borrows, which use the mut reserved word, like so:
&'a mut Vec<i32>

The above snippet refers to a mutable borrow of a Vec<i32>, where the underlying vector is in
memory for at least ’a lifetime.

Mutable borrows work similarly to mutable borrows, with the following twists. With immutable
borrows, the same data may be borrowed multiple times in the same context, as none of the borrows
can change the underlying object. However, with mutable borrows, only one such mutable borrow
may be active at any time. Furthermore, if a mutable borrow is active, all mutation must be done
through the mutable borrow, and no immutable borrows or ownership transfers are permitted.
While restrictive, these requirements prevent data races from occurring - all mutation is very
carefully tracked and made explicit in the types; it is not possible for data to be modified “out from
under you”, as it is in most languages.

2 THE REWRITE RULES
This section gives a simplified fragment of Rust HIR that we perform rewrite operations on
(Figure 1), and the specific rewrite rules we use to rewrite the initial program according to a given
configuration and taint analysis results. We consider a core language (Figure 1), and we rewrite
other constructs like unary/binary operations and method calls to function calls. We similarly
rewrite fused assignment operators (e.g., +=) to equivalent unfused code. The notation −→𝑎 denotes
a sequence of 𝑎s. For example, a function call contains a sequence of expressions representing
arguments. 𝑒𝑔𝑢𝑎𝑟𝑑 denotes the guard expression in pattern matches. Similar to Oxide, we maintain
a context denoting whether an expression is used in a place where it is borrowed mutably or
immutably, or owned; these contexts are defined in Figure 2. The context assignee denotes that the
expression is on the left-hand side of an assignment-like expression or being borrowed mutably.
move denotes that the expression’s value should be moved, as it is used in a context that should
own its value. The notation 𝑐 [𝑑 ↦→ 𝑒] is used for conditionally updating the context: if 𝑐 = 𝑑

then 𝑐 [𝑑 ↦→ 𝑒] produces 𝑒 , otherwise it produces 𝑐 . AdjustedType is a function provided by the
Rust compiler that gives the type of the expression in the context it is used (after coercions, and
converting &mut to & if necessary).

RewriteProgram adds lifetimes to each struct according to the method described in Section 3.3
of the original paper [Emre et al. 2021], and assigns unique lifetimes to each lifetime variable needed

, Vol. 1, No. 1, Article . Publication date: September 2021.

Supplementary Material on “Translating C to Safer Rust” 5

in a function signature. It adds the lifetime constraints to each function signature directly from the
configuration. The function bodies are rewritten using the rewrite rules given in Figures 3 to 5.
The helper PKind returns the kind (owned, borrowed, raw) of an expression as computed by the
taint analyses from the current configuration. Other helper functions are defined in Figure 6. The
rewrite rule 𝑐 ⊢ 𝑒1 → 𝑒2 denotes that 𝑒1 is rewritten into 𝑒2 under mutability context 𝑐 . Similarly,
𝑐 ⊢ 𝑠1 → 𝑠2 denotes that the statement 𝑠1 is rewritten into the statement 𝑠2 under the context 𝑐 as
described in Figure 5. After rewriting an expression according to the rules given in Figures 3 and 4,
we check the context of the expression and the pointer kind to decide whether to re-borrow the
expression according to Section 3.3 of the original paper. Let 𝑐 be the current context, 𝑝 = PKind(𝑒),
and 𝑐 ⊢ 𝑒 → 𝑒 ′. Then, if 𝑒 has a pointer type, we choose whether to re-borrow 𝑒 ′ according to the
following conditionally-applied rules (attempted from first to last):

• 𝑝 = owned and 𝑐 ≠ move. We borrow the box by rewriting 𝑒 ′ to 𝑒 ′.as_ref().map(|x| x.as_ref

()) (we use as_mut instead of as_ref if the current context is mut).
• 𝑝 = owned and 𝑐 = move. We do not re-borrow the expression’s value, as it should be moved.
• 𝑝 = raw. We do not perform any re-borrowing, as 𝑝 is a raw pointer.
• 𝑝 = borrowed and 𝑐 = mut. We rewrite 𝑒 ′ into borrow_mut(&mut 𝑒 ′).
• 𝑝 = borrowed, 𝑐 = not, and 𝑒 has a mutable pointer type. We rewrite 𝑒 ′ into borrow(& 𝑒 ′).
• 𝑝 = borrowed, 𝑐 = not, and 𝑒 has an immutable pointer type. We rewrite 𝑒 ′ into 𝑒 ′.clone().
• Otherwise, we do not re-borrow the value of the expression.

3 SIMPLIFIED VERSION OF THE BORROW CHECKER VIOLATION IN BZIP2

In the snippet below, the object pointed to by strm is borrowed into (*s).strm, and it is later mutated
while s and the first borrow is still alive. This is a simplified version of BZ2_bzCompressInit function
from bzip2 where all the code unrelated to the borrow conflict is removed.
1 unsafe fn BZ2_bzCompressInit <'a1 >(mut strm: Option <&mut bz_stream >, /* removed */) {

2 let mut s: *mut EState = core::ptr::null();

3 // ...

4 (*s).strm = borrow_mut (&mut strm); // first mutable borrow occurs here

5 // ... other borrow conflicts also occur here , but we isolate only one below

6 (* borrow_mut (&mut strm).unwrap ()).state = s; // Here , the object pointed to by strm is mutated by

assigning to its state field.

7 }

Because of the conflict above, we promote the borrowed expression (strm) to be a raw pointer.
In this specific case, a higher level rewriting approach might have reorganized the statements to
resolve the borrow conflict.

4 THE FULL PROGRAM AFTER APPLYING ALL STEPS OF OUR TECHNIQUE
Figure 7 shows the full BST program after applying all steps of our technique.

REFERENCES
Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf. 2021. Translating C to Safer Rust. Proc. ACM Program.

Lang. 5, OOPSLA, Article 121 (Oct. 2021), 29 pages. https://doi.org/10.1145/3485498
S. Klabnik and C. Nichols. 2018. The Rust Programming Language. No Starch Press. https://doc.rust-lang.org/book/
Nicholas D Matsakis. 2018. An alias-based formulation of the borrow checker. https://smallcultfollowing.com/babysteps/

blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://doi.org/10.1145/3485498
https://doc.rust-lang.org/book/
https://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/
https://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/

6 Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf

𝑒 ∈ Expression ::= [−→𝑒] array literals

𝑒 ∈ Expression ::=𝑇 {−−−−→fld : 𝑒} | struct construction

𝑓 (−→𝑒) | function call

(−→𝑒) | tuples
&𝜇 𝑒 | address-of operator
∗ 𝑒 | dereference
𝑙 ∈ Literal |
𝑒 as 𝜏 |
𝑥 ∈ 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 |
loop 𝑒 |
match 𝑒𝑠𝑐𝑟𝑢𝑡𝑖𝑛𝑒𝑒

−−−−−−−−−−→
𝑝𝑒𝑔𝑢𝑎𝑟𝑑 ⇒ 𝑒 | pattern matching

𝑒1 = 𝑒2 | assignment
𝑒.fld | field access
𝑒1 [𝑒2] | array access
−→𝑠 𝑒 | blocks
break | continue | return 𝑒 early return, control flow redirection

𝑠 ∈ Statement ::= let 𝜇𝑥 = 𝑒1; 𝑒2 | 𝑒;
𝜇 ∈ Mutability ::=mut | not

𝜏 ∈ Type ::= ∗ 𝜇𝜏 | raw pointers
&𝜇𝜏 | borrowing references
𝑂𝑝𝑡𝑖𝑜𝑛 < 𝐵𝑜𝑥 < 𝜏 >> | owned references
𝑇 ∈ StructName | structs
. . . other types

𝑝 ∈ Pattern

Fig. 1. Abstract syntax for the fragment of Rust HIR that is relevant to our rewrite rules for expressions.

Because we rely on the compiler for lifetime inference, the lifetimes inside types are elided.

𝑐 ∈ UseCtx ::= mut | not |move | assignee

Fig. 2. The contexts for determining how a variable is used.

, Vol. 1, No. 1, Article . Publication date: September 2021.

Supplementary Material on “Translating C to Safer Rust” 7

𝑐 ⊢ 𝑥 → 𝑥 Var 𝑐 ⊢ 𝑙 → 𝑙
Lit

𝑐 ⊢ break → break Break

𝑐 ⊢ continue → continue Cont
𝑐 ⊢ 𝑒𝑖 → 𝑒 ′𝑖

𝑐 ⊢ [−→𝑒𝑖] → [−→𝑒 ′𝑖]
Array

𝑐 ⊢ 𝑒𝑖 → 𝑒 ′𝑖

𝑐 ⊢ 𝑇 {−−−−−−→𝑓 𝑙𝑑𝑖 : 𝑒𝑖 } → 𝑇 {−−−−−−→𝑓 𝑙𝑑𝑖 : 𝑒 ′𝑖 }
Struct

𝑐 ⊢ 𝑒𝑖 → 𝑒 ′𝑖

𝑐 ⊢ (−→𝑒𝑖) → (−→𝑒 ′𝑖)
Tuple

assignee ⊢ 𝑒 → 𝑒 ′

𝑐 ⊢ return 𝑒 → return 𝑒 ′
Return not ⊢ 𝑒 → 𝑒 ′

𝑐 ⊢ loop 𝑒 → loop 𝑒 ′ Loop

Ctx(𝑒𝑠𝑐𝑟𝑢𝑡𝑖𝑛𝑒𝑒) ⊢ 𝑒𝑠𝑐𝑟𝑢𝑡𝑖𝑛𝑒𝑒 → 𝑒 ′𝑠𝑐𝑟𝑢𝑡𝑖𝑛𝑒𝑒 not ⊢ 𝑒𝑔𝑢𝑎𝑟𝑑 → 𝑒 ′
𝑔𝑢𝑎𝑟𝑑

𝑐 ⊢ 𝑒 → 𝑒 ′

𝑐 ⊢ match 𝑒𝑠𝑐𝑟𝑢𝑡𝑖𝑛𝑒𝑒
−−−−−−−−−−→
𝑝𝑒𝑔𝑢𝑎𝑟𝑑 ⇒ 𝑒 → match 𝑒 ′𝑠𝑐𝑟𝑢𝑡𝑖𝑛𝑒𝑒

−−−−−−−−−−−→
𝑝𝑒 ′

𝑔𝑢𝑎𝑟𝑑
⇒ 𝑒 ′

Match

(𝑓 ≠ malloc ∨ PKind(𝑓 (−→𝑒𝑖)) = raw) move ⊢ 𝑒𝑖 → 𝑒 ′𝑖 PKind(param𝑓 𝑖) = owned

𝑐 ⊢ 𝑓 (−→𝑒𝑖) → 𝑓 (−→𝑒 ′𝑖)
Call-Mv

(𝑓 ≠ malloc ∨ PKind(𝑓 (−→𝑒𝑖)) = raw) Ctx(𝑒𝑖) ⊢ 𝑒𝑖 → 𝑒 ′𝑖 PKind(param𝑓 𝑖) ≠ owned

𝑐 ⊢ 𝑓 (−→𝑒𝑖) → 𝑓 (−→𝑒 ′𝑖)
Call-Br

PKind(malloc(𝑙)) ≠ raw

𝑐 ⊢ malloc(𝑙) as ∗ 𝜇𝑇 → Box::new(𝑇::default())
Malloc

𝑐 ′ = 𝑐 [assignee ↦→ mut] PKind(𝑒) = raw 𝑐 ′ ⊢ 𝑒 → 𝑒 ′

𝑐 ⊢ ∗𝑒 → ∗𝑒 ′ Deref-Raw

𝑐 ′ = 𝑐 [assignee ↦→ mut] PKind(𝑒) ≠ raw 𝑐 ′ ⊢ 𝑒 → 𝑒 ′

𝑐 ⊢ ∗𝑒 → ∗(𝑒 ′.unwrap()) Deref-Safe

PKind(𝑒) = raw 𝑐 ⊢ 𝑒 → 𝑒 ′ 𝜏 ↦→{𝑒 } 𝜏
′

𝑐 ⊢ 𝑒 as 𝜏 → 𝑒 ′ as 𝜏 ′ Cast-Raw
PKind(𝑒) ≠ raw 𝑐 ⊢ 𝑒 → 𝑒 ′

𝑐 ⊢ 𝑒 as ∗ 𝜇𝜏 → 𝑒 ′
Cast-Rm

PKind(𝑒) = raw not ⊢ 𝑒 → 𝑒 ′

𝑐 ⊢ ¬ 𝑒 → ¬ 𝑒 ′ &-Raw
PKind(𝑒) = borrowed not ⊢ 𝑒 → 𝑒 ′

𝑐 ⊢ &𝑒 → 𝑆𝑜𝑚𝑒 (¬ 𝑒 ′) &-Safe

PKind(𝑒) = raw mut ⊢ 𝑒 → 𝑒 ′

𝑐 ⊢ &mut 𝑒 → mut𝜇𝑒 ′ &Mut-Raw

PKind(𝑒) = borrowed assignee ⊢ 𝑒 → 𝑒 ′

𝑐 ⊢ &mut𝑒 → 𝑆𝑜𝑚𝑒 (&mut 𝑒 ′) &Mut-Safe

Fig. 3. Rules for rewriting expressions, part I.

, Vol. 1, No. 1, Article . Publication date: September 2021.

8 Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf

𝑐 ⊢ 𝑒 → 𝑒 ′

𝑐 ⊢ 𝑒.𝑓 𝑙𝑑 → 𝑒 ′.𝑓 𝑙𝑑
Field

𝑐 ⊢ 𝑒1 → 𝑒 ′1 not ⊢ 𝑒2 → 𝑒 ′2
𝑐 ⊢ 𝑒1 [𝑒2] → 𝑒 ′1 [𝑒 ′2]

Index

𝑐 ⊢ 𝑒 → 𝑒 ′ not ⊢ 𝑠 → 𝑠 ′

𝑐 ⊢ −→𝑠 𝑒 → −→
𝑠 ′𝑒 ′

Block

assignee ⊢ 𝑒1 → 𝑒 ′1 PKind(𝑥) = owned move ⊢ 𝑒2 → 𝑒 ′2
𝑐 ⊢ 𝑒1 = 𝑒2 → 𝑒 ′1 = 𝑒 ′2

Assign-Move

assignee ⊢ 𝑒1 → 𝑒 ′1 PKind(𝑥) ≠ owned AdjustedType(𝑒1) ≠ ∗𝑚𝑢𝑡 𝜏

not ⊢ 𝑒2 → 𝑒 ′2
𝑐 ⊢ 𝑒1 = 𝑒2 → 𝑒 ′1 = 𝑒 ′2

Assign-Not

assignee ⊢ 𝑒1 → 𝑒 ′1 PKind(𝑥) ≠ owned AdjustedType(𝑒1) = ∗𝑚𝑢𝑡 𝜏

mut ⊢ 𝑒2 → 𝑒 ′2
𝑐 ⊢ 𝑒1 = 𝑒2 → 𝑒 ′1 = 𝑒 ′2

Assign-Mut

Fig. 4. Rules for rewriting expressions, part II.

𝑐 ⊢ 𝑒2 → 𝑒 ′2 PKind(𝑥) = owned move ⊢ 𝑒1 → 𝑒 ′1
𝑐 ⊢ let 𝜇𝑥 = 𝑒1; 𝑒2 → let 𝑥 = 𝑒 ′1; 𝑒

′
2

S-Let-Move

𝑐 ⊢ 𝑒2 → 𝑒 ′2 PKind(𝑥) ≠ owned mut ⊢ 𝑒1 → 𝑒 ′1
𝑐 ⊢ let mut𝑥 = 𝑒1; 𝑒2 → let 𝑥 = 𝑒 ′1; 𝑒

′
2

S-Let-Mut

𝑐 ⊢ 𝑒2 → 𝑒 ′2 PKind(𝑥) ≠ owned not ⊢ 𝑒1 → 𝑒 ′1
𝑐 ⊢ let not𝑥 = 𝑒1; 𝑒2 → let 𝑥 = 𝑒 ′1; 𝑒

′
2

S-Let-Not

not ⊢ 𝑒 → 𝑒 ′

𝑐 ⊢ 𝑒;→ 𝑒 ′; S-Semicolon

Fig. 5. Rules for rewriting statements.

, Vol. 1, No. 1, Article . Publication date: September 2021.

Supplementary Material on “Translating C to Safer Rust” 9

Ctx(𝑒) = Mutability(AdjustedType(𝑒))

Mutability(𝜏) =
{
mut 𝜏 = ∗mut𝜏 ′
not otherwise

𝜏 ≠ ∗𝜇𝜏 ′′
𝜏 ↦→𝑙𝑜𝑐 𝜏

′ T-NonPtr

𝜏 ↦→PtsTo(𝑙𝑜𝑐) 𝜏
′ PKind(𝑙𝑜𝑐) = 𝑟𝑎𝑤

∗𝜇𝜏 ↦→𝑙𝑜𝑐 ∗𝜇𝜏 ′
T-RawPtr

𝜏 ↦→PtsTo(𝑙𝑜𝑐) 𝜏
′ PKind(𝑙𝑜𝑐) = 𝑜𝑤𝑛𝑒𝑑

∗𝜇𝜏 ↦→𝑙𝑜𝑐 Option<Box<𝜏
′>>

T-OwnedPtr

𝜏 ↦→PtsTo(𝑙𝑜𝑐) 𝜏
′ PKind(𝑙𝑜𝑐) = 𝑏𝑜𝑟𝑟𝑜𝑤𝑒𝑑

∗𝜇𝜏 ↦→𝑙𝑜𝑐 Option<&𝜇𝜏 ′>
T-RawPtr

Fig. 6. Helper functions for rewriting expressions and nested types. 𝜏 ↦→𝑙𝑜𝑐 𝜏
′
rewrites a type that is associated

with the set of locations 𝑙𝑜𝑐 . PtsTo returns the points-to set of given set of locations.

, Vol. 1, No. 1, Article . Publication date: September 2021.

10 Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf

1 // bst.rs

2 use std::os::raw::c_int;

3 // BST node

4 pub struct node_t <'a1, 'a2> {

5 pub left: Option <&'a1 mut node_t <'a1, 'a2>>,

6 pub right: Option <&'a1 mut node_t <'a1, 'a2>>,

7 pub value: Option <&'a2 mut c_int >,

8 }

9 impl <'a1, 'a2> std:: default :: Default for node_t <'a1, 'a2> {

10 // ...

11 }

12 pub fn insert <'a1, 'a2, 'a3 >(mut value: c_int ,

13 mut node: Option <&'a1 mut node_t <'a2, 'a3 >>) {

14 // ...

15 }

16 pub fn find <'a1, 'a2, 'a3, 'a4, 'a5, 'a6 >(mut value: c_int , mut node: Option <&'a1 mut node_t <'a2, 'a3 >>)

17 -> Option <&'a4 mut node_t <'a5, 'a6>>

18 where 'a1: 'a4, 'a5: 'a2, 'a6: 'a3, 'a3: 'a6, 'a2: 'a5

19 {

20 if value < **(** node.as_ref ().unwrap ()).value.as_ref ().unwrap () && !(** node.as_ref ().unwrap ()).left.

is_none () {

21 return find(value , borrow_mut (&mut (*node.unwrap ()).left))

22 } else {

23 if value > **(** node.as_ref ().unwrap ()).value.as_ref ().unwrap () && !(** node.as_ref ().unwrap ()).

right.is_none () {

24 return find(value , borrow_mut (&mut (*node.unwrap ()).right))

25 } else { if value == **(** node.as_mut ().unwrap ()).value.as_mut ().unwrap () { return node } }

26 }

27 return None;

28 }

29
30 // main.rs

31 use std::os::raw::c_int;

32 use bst::{node_t , insert , find};

33
34 pub fn main_0 () -> int {

35 // Using Box to avoid malloc clutter

36 let mut tree = Some(Box::new(crate:: node_t :: default ()));

37 **(** tree.as_mut ().unwrap ()).value.as_mut ().unwrap () = 3;

38 // insert 2 nodes

39 insert(1, tree.as_mut ().map(|b| b.as_mut ()));

40 insert(2, tree.as_mut ().map(|b| b.as_mut ()));

41 // change the value of node containing 3 to 4

42 **(** find(3, tree.as_mut ().map(|b| b.as_mut ())).as_mut ().unwrap ()).value.as_mut ().unwrap () = 4;

43 return 0;

44 }

Fig. 7. The safe Rust program with no raw pointers after applying all steps of our technique.

, Vol. 1, No. 1, Article . Publication date: September 2021.

	Abstract
	1 Rust's Ownership System
	1.1 Motivation
	1.2 Ownership
	1.3 Borrowing and Lifetimes

	2 The Rewrite Rules
	3 Simplified version of the borrow checker violation in bzip2
	4 The full program after applying all steps of our technique
	References

