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Rust is a relatively new programming language that targets efficient and safe systems-level applications. It

includes a sophisticated type system that allows for provable memory- and thread-safety, and is explicitly

designed to take the place of unsafe languages such as C and C++ in the coding ecosystem. There is a large

existing C and C++ codebase (many of which have been affected by bugs and security vulnerabilities due to

unsafety) that would benefit from being rewritten in Rust to remove an entire class of potential bugs. However,

porting these applications to Rust manually is a daunting task.

In this paper we investigate the problem of automatically translating C programs into safer Rust programs—

that is, Rust programs that improve on the safety guarantees of the original C programs. We conduct an

in-depth study into the underlying causes of unsafety in translated programs and the relative impact of fixing

each cause. We also describe a novel technique for automatically removing a particular cause of unsafety and

evaluate its effectiveness and impact. This paper presents the first empirical study of unsafety in translated Rust

programs (as opposed to programs originally written in Rust) and also the first technique for automatically

removing causes of unsafety in translated Rust programs.

CCS Concepts: • Software and its engineering→ Software evolution;Maintaining software; Source code
generation; Software maintenance tools.

Additional Key Words and Phrases: Rust, C, Automatic Translation, Memory-Safety, Empirical Study

ACM Reference Format:
Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf. 2021. Translating C to Safer Rust. Proc. ACM
Program. Lang. 5, OOPSLA, Article 121 (October 2021), 29 pages. https://doi.org/10.1145/3485498

1 INTRODUCTION
Rust is a relatively recent programming language designed for building safe and efficient low-level

software [Klabnik and Nichols 2018]. It provides strong static guarantees about memory and thread

safety while avoiding the need for garbage collection, and allows for low-level data manipulations

often required by system-level software. Rust has been used for building operating systems, web

browsers, and garbage collectors [Anderson et al. 2015; Levy et al. 2015; Lin et al. 2016] and it is

being adopted into complex software projects with large C/C++ code-bases such as Firefox [Bryant

2016], the Linux kernel [rus [n.d.]a,n], and Android [Stoep and Hines 2021].

An alarming amount of critical systems software (much of which predates the development of

Rust) is instead written in unsafe languages such as C and C++. Those languages’ lack of memory
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and thread safety has led to numerous critical bugs and security flaws [noa 2021a,b; Durumeric

et al. 2014] with attendant costs in terms of both money and human lives [Durumeric et al. 2014;

Leveson and Turner 1993]. In light of Rust’s recent development and promise of safety, a natural

question arises about the possible benefits of porting software from these unsafe languages to Rust,

eliminating a large class of potential errors. In fact, there has been some informal investigation

into the question of how effective Rust would be at fixing critical errors in existing C code (after

all, not all bugs and security flaws are due to memory or thread unsafety). As an example, one

indicative (though unscientific) study done on cURL, a popular data transfer utility written in

C, conservatively estimates that using Rust would eliminate 53 of the 95 known cURL security

flaws [Hutt 2021].

One obvious objection to porting existing software into Rust is the sheer effort required to rewrite

the code in a new language. An automated, rather than manual, translation would make that effort

much more practical. The primary barrier to such an automated translation is Rust’s sophisticated

type system which it uses to provide the desired memory and thread safety guarantees. To produce

verifiably safe Rust code from unsafe C code, for example, requires the translator to analyze the

relevant properties of the C code and create a suitable well-typed Rust program that correctly

expresses those properties.

There have been several industry-backed attempts to automatically translate C programs to

Rust [Citrus Developers [n.d.]; Immunant inc. 2020b; Sharp 2020]. These translations are purely

syntactic in nature, producingmemory- and thread-unsafe Rust code that closelymimics the original

C code and explicitly bypasses the safety checks of the Rust compiler (by marking all translated

code with Rust’s built-in unsafe annotation). While these tools provide a good starting point for

automated translation, they leave the hard work of manually reasoning about the safety properties

of the translated program and rewriting the code to enable the Rust compiler to verify those

properties to the developer. To our knowledge there has been no academic or industry investigation

into the question of whether and how unsafe languages can be automatically translated into safe
Rust programs. This paper makes two major contributions towards the goal of automatically

translating sequential C programs (for this stage of the work) to safer Rust programs, i.e., the goal

for now is not complete safety but simply more safety than the existing naive syntactic translations.

Our first contribution is a quantitative study on the sources and causes of unsafety present in

Rust programs that have been syntactically translated from C programs. While there have been

studies on unsafe code in native, hand-written Rust programs [Astrauskas et al. 2020; Qin et al.

2020], this is the first study that examines automatically translated Rust programs. We focus on Rust

code translated from C using the existing c2rust translator [Immunant inc. 2020b]. Our findings

indicate that unsafety in automatically translated Rust code differs in various significant ways from

unsafety in natively written Rust code. For example, a prevalent source of unsafety in automatically

translated code, unlike native code, is due to the use of raw pointers: the translation to Rust converts

all C pointers into raw pointers, and any dereference of a raw pointer must be marked as unsafe.

We break down all of the sources of unsafety present in our corpus of programs, quantify how

often they occur, explain what causes these sources of unsafety in the original C programs, and

quantify the impact of addressing each source of unsafety on the overall safety of the translated

Rust programs.

Our second contribution, informed by our study, is a technique for automatically generating safer

Rust code by addressing one common cause of unsafety. We focus specifically on the use of raw

pointers in the translated programs. Idiomatic Rust code instead uses safe references with explicitly

annotated lifetime information that allows the Rust compiler to safely deallocate the associated

memory when it is no longer needed. Rust uses an ownership-based model for statically reasoning

about references, shared references, mutability, lifetimes, and overall memory- and thread-safety
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[Boyapati et al. 2002, 2003]. Using this model, valid Rust programs are automatically proven safe

via Rust’s borrow checker. Invalid Rust programs, i.e., those unable to be statically proven as safe,

are rejected by the borrow checker (which ignores code explicitly marked as unsafe). We make

the key insight that we can piggyback on Rust’s borrow checker in order to extract the lifetime,

sharing, and mutability information we need to turn a subset of raw pointers into safe references.

We introduce and implement a translation technique based on this insight which takes naively

translated, completely unsafe Rust programs and generates safer Rust programs (specifically, in this

case, one with fewer raw pointers). We evaluate our implementation on a corpus of C programs

and report on its effectiveness.

The specific contributions of this paper are as follows:

• A study of the sources of unsafety in Rust code that has been produced by c2rust (Section 2);

• A technique to rewrite a particular source of unsafety in translated programs (a specific kind

of raw pointer) that hooks into the Rust compiler to extract type- and borrow-checker results

and uses them to generate verifiably safe code (Section 3);

• An implementation of this technique
1
with a corresponding evaluation of its effectiveness

(Section 4).

We end with a discussion of related work (Section 5) and conclusion (Section 6).

2 UNSAFETY IN TRANSLATED RUST PROGRAMS
We investigate the various sources of unsafety in Rust programs that have been translated from C

using c2rust. While there are existing studies of unsafe code in the native Rust ecosystem [As-

trauskas et al. 2020; Qin et al. 2020] our investigation is specifically about automatically translated

Rust programs, which may have a different distribution of unsafe code than Rust programs written

by developers.

2.1 C Program Corpus
Previous studies of unsafe Rust code have taken advantage of large repositories of native Rust

programs such as crates.io. There does not exist a large repository of Rust code that has been

translated from C, and so we must create our own corpus of C programs. While there are many

existing C programs to choose from, each translation requires a fair amount of manual labor to

correctly insert c2rust in that C program’s particular build process, and also c2rust itself does
not work on all C programs and build environments.

We have collected 17 open source C programs of various sizes and application domains, as shown

in Table 1. 11 of the programs came from the c2rust manual [Immunant inc. 2020a] (marked with

bold in the table); the remaining six came from GitHub. We picked programs from a variety of

application domains, as described in the table. Table 1 shows that, on average, the translated Rust

programs are 1.8× larger than their C counterparts. Decreases in translated LoC arise because

c2rust removes obviously dead or unreachable code. Increases in translated LoC come from macro

expansion, adding function declarations for functions included from the headers, translation of

increment and decrement operators
2
, and annotations such as #[no_mangle] and #[repr(C)] to

make the Rust code compatible with the C ecosystem.

Table 1 also shows that the vast majority of functions in the translated code are marked unsafe.
Specifically, all translated functions directly from the original C program are marked unsafe, and
only auxiliary functions generated and introduced during the translation itself are marked safe.

1
The accompanying artifact including our evaluation is available at [Emre and Schroeder 2021].

2
Rust does not have increment-and-return operators like ++x and assignments do not return the left-hand side, so these

operators are translated into multiple statements in Rust.
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Table 1. Corpus C programs, ordered by Rust lines of code. Programs coming from the c2rust manual
are marked with bold. LoC = lines of code, not counting comments or blank lines. The tulipindicators and
robotfindskitten programs are abbreviated as TI and RFK, respectively.

Program Application Domain C LoC Rust LoC # Functions # unsafe Functions

qsort Algorithms 27 39 3 3

libcsv Text I/O 1,035 951 23 23

grabc GUI Tool 224 994 7 6

urlparser Parsing 440 1,114 22 21

RFK Video games 838 1,415 18 17

genann Neural nets 642 2,119 32 27

xzoom GUI Tool 776 2,409 11 10

lil Interpreters 3,555 5,367 160 159

snudown Markdown Parser 5,002 6,088 92 92

json-c Parsing 6,933 8,430 178 178

libzahl Big integers 5,743 10,896 230 230

bzip2 Compression 5,831 14,011 128 126

TI Time series analysis 4,643 19,910 234 229

tinycc Compilers 46,878 62,569 662 625

optipng Image processing 87,768 93,194 576 572

tmux Terminal I/O 41,425 191,964 1,371 1,370

libxml2 Parsing 201,695 430,243 3,029 3,009

Total — 413,428 851,674 6,773 6,694

Although all functions directly coming from C are conservatively marked unsafe by the translation,
we observe that some do not actually require the unsafe tag. In Section 2.2 we quantify how many

functions are unnecessarily marked unsafe by the translation. Furthermore, we characterize

different sources of unsafe and quantify how prevalent they are in the program.

Threats to Validity. Our corpus of C programs is limited in number because of the manual

effort required to: (1) convert each C program to a corresponding Rust program with necessary

adjustments to their respective build processes; and (2) reorganize the code (such as unit tests)

in a way that Cargo, the de-facto standard build system for Rust, can build the resulting Rust

project reliably. The size of the corpus means that the percentages we report may not reflect the

percentages of a larger pool of C programs. We have selected different C programs from a variety

of domains to help increase the validity of our corpus and to try to generalize results.

2.2 Provenance of Unsafety
The Rust Reference [The Rust developers [n.d.]] defines the following sources of unsafety:

(1) Dereferencing a raw pointer

(2) Reading from or writing to a mutable global (i.e., static) or external variable
(3) Reading from a field of a C-style untagged union

(4) Calling a function marked unsafe (including external functions and compiler intrinsics)

(5) Implementing a trait that is marked unsafe

These categories are too coarse-grained for our purposes. In particular, Category 4 includes

almost all calls to the other functions in the program, as nearly all functions in the program are

initially marked unsafe. Category 4 also includes the use of inline assembly and unsafe casting,

which we would like to separate from other sources of unsafety for our study.

We have refined the official categories above into distinct features, where each feature reflects a

particular unsafe feature in Rust. These features give us a clearer picture of programs translated
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from C. Since none of the programs in our corpus implement any unsafe traits (they only implement

traits that can be derived by the compiler, which are all safe), we do not consider Category 5 further.

Programs in our corpus call external functions extensively (e.g., malloc), making external function

calls (Category 4) a major source of unsafe function calls. We count calls to malloc and free
separately from other external function calls, as we conjecture that most of the allocation-related

external calls can be converted to safe memory allocation mechanisms in Rust such as Box::new.
In our corpus, the only unsafe Rust standard library function called is std::mem::transmute, used
for reinterpreting/casting a value. We exclude calls to std::mem::transmute when it is used for

casting byte arrays to C-style character arrays (which is safe under the assumption made by c2rust
that a character is 8 bits). The resulting features that we measure for our corpus are as follows,

where the text in bold indicates the column names in our tables:

• RawDeref: dereferencing a raw pointer;

• Global: reading from, writing to, or making a reference to a mutable global (static) or
external variable;

• Union: reading from a field of a C-style untagged union;

• Allocation: direct external function calls to malloc and free;

• Extern: calling an external function other than a function defined in another module in the

same program,
3 malloc, or free; or making an indirect call via a function pointer;

4

• Cast: unsafe casting using std::mem::transmute;

• InlineAsm: using inline assembly.

We collect our data on a function-level because (1) c2rust marks functions unsafe rather than

inserting unsafe blocks,5 and (2) existing work on quantifying unsafe behavior of Rust programs

in general [Astrauskas et al. 2020] aggregates the relevant information on a function level because

different developers may prefer to use different granularities for unsafe blocks.

An important omission in our categories of unsafety is that of direct calls to unsafe functions
(i.e., the original Category 4 above). As previously mentioned, this category is not useful for

our translated corpus because almost all function calls are to unsafe functions, and what we

are interested in is why the functions are unsafe. For this reason, we count sources of unsafety

differently from any existing work: a function is unsafe in relation to some category above not only

if it directly contains unsafe code relevant to that category, but also if it directly or transitively

calls a function that is unsafe due to that category. In other words, we count a function as unsafe

for a category if executing that function can exhibit unsafe behavior relevant to that category. To

calculate this, we build a call graph and propagate unsafe behavior from callees to their transitive

set of callers. We use a transitive metric since our ultime goal is to see how many functions the

compiler could prove safe if a specific cause of unsafety is fixed.

For each unsafe feature, we collect the following information for our study: (1) How many

unsafe functions in the program use the unsafe feature, directly or transitively (i.e., how many

functions need the unsafe feature), (2) How many unsafe functions in the program use only this

3c2rust uses extern declarations to import functions from other modules in the same program. These functions can be

imported directly as non-external functions after the changes described in Section 3.2, so we do not count these functions

as external functions in our study.

4
An indirect call could be calling an external function, and just like an extern call the compiler can only see the function

signature of the callee but not the body.

5
Except when generating shims for the main function, which cannot be marked unsafe. These shims extract the program

arguments then immediately call the main function from the C program.
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Table 2. How many times different categories of unsafety appear in each corpus program. The meaning of
each column is explained in Section 2.2.

Benchmark Union Global InlineAsm Extern RawDeref Cast Alloc

qsort 0 0 0 0 10 0 0

grabc 6 15 0 31 21 0 0

libcsv 0 2 0 35 174 4 0

RFK 0 127 0 87 24 0 2

urlparser 0 1 0 122 60 43 55

genann 0 164 0 188 339 3 5

xzoom 15 455 0 76 172 0 2

lil 0 10 0 149 1668 11 62

snudown 0 19 0 104 842 0 9

json-c 101 93 0 208 1843 17 30

bzip2 0 700 0 424 3764 1 14

TI 0 108 0 352 1847 84 9

libzahl 0 430 29 63 2457 0 43

tinycc 613 2552 0 465 5632 31 2

optipng 82 1361 0 816 6062 37 43

tmux 74 769 0 2707 21658 161 599

libxml2 499 3571 0 4593 52546 15 15

Total 1390 10377 29 10420 99119 407 890

unsafe feature, (3) How many times a use of the unsafe feature appears in the program text, and

(4) The total size (in lines of code) of unsafe functions that directly or transitively use the unsafe

feature

To get the feature counts for item 3 in the above list, we first convert the translated Rust

programs to Rust High-level IR (HIR)
6
, an AST-based representation. From there, we count individual

features in the HIR in the following ways: for pointer dereferences, we count the number of raw

pointer dereference nodes
7
; for inline assembly, we count the number of inline assembly nodes; for

interaction with mutable or external globals, we count how many times these variables are used

(read from, written to, or taken a reference of) in the source code.; for reading from a union,

we count each field access involving a union, unless it is immediately on the left-hand side of

an assignment; and for memory allocation, external functions, and unsafe casting, we count the

number of static call sites to the relevant functions.

Table 2 lists how many times each source of unsafety statically appears for each program in

our corpus. We observe that there are two sources which do not appear across many programs,

namely C-style unions (which appear only in larger programs) and inline assembly (which is only

used in one program). Table 2 shows that the most common source of unsafety is raw pointer

dereferencing, which is eight times more common than the next most common source (globals),

followed closely by external function calls. The number of direct calls to malloc and free (Alloc)
was occasionally surprisingly low, as with libxml2; upon observation of libxml2’s codebase, it uses

custom memory allocation functions almost everywhere, limiting the number of static allocation

sites our analysis could find.

6
HIR is used internally in the Rust compiler, and is close to initial AST obtained after expanding macros, type checking, and

normalizing loops and conditionals. We chose to use HIR because it provides type information needed by our analyses and

it is close to the source code.

7
At the minimum, a static analysis must consider all dereferences to ensure the safety of raw pointers. As such, analysis

cost is expected to increase with the number of dereference nodes, making this an interesting feature to track.
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Table 3. Number of functions affected by each category of unsafety (a function may be counted multiple
times if affected by multiple categories). FP denotes false positives: functions that do not contain any unsafe
behavior but are marked unsafe by c2rust. The column labels are explained in Section 2.2. The percentages
with respect to the total number of unsafe functions are notated with a superscript. Some behavior does not
occur uniquely in any program, in that case, we do not include the percentage for that column.

Program Union Global InlineAsm Extern RawDeref Cast Alloc FP

∃! ∃≥2 ∃! ∃≥2 ∃! ∃≥2 ∃! ∃≥2 ∃! ∃≥2 ∃! ∃≥2 ∃! ∃≥2
qsort 0 0 0 0 0 0 0 0 3

100%
0 0 0 0 0 0

grabc 0 3
50%

1
17%

4
67%

0 0
0%

0
0%

4
67%

1
17%

5
83%

0 0
0%

0
0%

0
0%

0
0%

libcsv 0 0
0%

1
4%

1
4%

0 0
0%

0
0%

9
39%

13
57%

22
96%

0 4
17%

0
0%

0
0%

0
0%

urlparser 0 0
0%

0
0%

14
67%

0 0
0%

0
0%

20
95%

0
0%

17
81%

0 1
5%

0
0%

19
90%

0
0%

RFK 0 0
0%

0
0%

15
88%

0 0
0%

1
6%

15
88%

0
0%

7
41%

0 0
0%

0
0%

2
12%

1
6%

genann 0 0
0%

0
0%

14
52%

0 0
0%

1
4%

24
89%

0
0%

21
78%

0 13
48%

1
4%

18
67%

2
7%

xzoom 0 1
10%

1
10%

10
100%

0 0
0%

0
0%

9
90%

0
0%

8
80%

0 0
0%

0
0%

4
40%

0
0%

lil 0 0
0%

2
1%

73
46%

0 0
0%

1
1%

134
84%

14
9%

148
93%

0 52
33%

1
1%

100
63%

2
1%

snudown 0 0
0%

1
1%

37
40%

0 0
0%

0
0%

63
68%

19
21%

90
98%

0 0
0%

0
0%

34
37%

1
1%

json-c 0 62
35%

10
6%

49
28%

0 0
0%

4
2%

114
64%

24
13%

144
81%

0 49
28%

1
1%

51
29%

11
6%

bzip2 0 0
0%

3
2%

79
63%

0 0
0%

7
6%

85
67%

23
18%

82
65%

0 3
2%

2
2%

26
21%

6
5%

libzahl 0 0
0%

0
0%

115
50%

0 111
48%

0
0%

114
50%

90
39%

230
100%

0 0
0%

0
0%

110
48%

0
0%

TI 0 0
0%

0
0%

13
6%

0 0
0%

1
0%

104
45%

74
32%

175
76%

0 73
32%

1
0%

16
7%

49
21%

tinycc 0 286
46%

5
1%

492
79%

0 0
0%

8
1%

498
80%

54
9%

577
92%

0 244
39%

1
0%

358
57%

30
5%

optipng 0 57
10%

4
1%

297
52%

0 0
0%

14
2%

371
65%

126
22%

487
85%

0 57
10%

7
1%

141
25%

29
5%

tmux 0 569
42%

9
1%

710
52%

0 0
0%

9
1%

1030
75%

244
18%

1328
97%

0 489
36%

1
0%

653
48%

5
0%

libxml2 0 198
7%

28
1%

2220
74%

0 0
0%

39
1%

2359
78%

369
12%

2740
91%

0 1156
38%

0
0%

1268
42%

183
6%

Total 0 1176
18%

65
1%

4143
62%

0 111
2%

85
1%

4953
74%

1054
16%

6081
91%

0 2141
32%

15
0%

2800
42%

319
5%

Table 3, in contrast to Table 2, takes a function-level approach, counting the number of functions

directly or transitively affected by each category of unsafety. We record functions that are uniquely

affected by a single category of unsafety (under the ∃! columns) and those that are affected by

multiple categories of unsafety including this one (under the ∃≥2 columns). The ∃≥2 columns will

count a function multiple times, once for each category it is affected by. Functions which were

marked unsafe by the translation but nonetheless are devoid of unsafe behavior are totalled in the

false positives (FP) column; we observe that 6% of functions fall into this category. Tables 2, and 3

show RawDeref, Global, and Extern to be the biggest sources of unsafe behavior, typically in that

order. However, while RawDeref is heavily overrepresented in terms of sheer usage (Table 2), at the

function level it compares much more closely to Global and Extern (Table 3). From the standpoint

of trying to make more functions safe, this is an important observation to make, as it shows that

RawDeref is not much more important than Global or Extern.

2.3 Underlying Causes of Unsafety
We now investigate the behaviors in the original C programs that lead to each category of unsafety.

Some categories of causes are obvious and uninteresting: mutable globals (Global) and dynamic

memory allocation (Allocation) are needed in C programs for creating long-lived objects that are

accessible from different parts of the program; inline assembly (InlineAsm) is used in only one

of our programs (libzahl) for architecture-specific optimizations. We examine the remaining

categories in more detail below.

2.3.1 Raw Pointers. We inspected the translated corpus programs and how they use raw pointers

in detail. We recognize five distinct reasons that a program might have for using a raw pointer:
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• The raw pointer appears as part of the public signature of an API implemented by the program.

This is a common occurrence in our corpus programs because most of them (except lil and

RFK) are either libraries or contain libraries.

• The raw pointer is obtained via custom memory allocation (i.e., calling malloc). These raw
pointers could be converted to safe references if we replace malloc with Rust’s safe memory

allocation and compute suitable lifetime information for them.

• The raw pointer is obtained via a cast to or from void*. In all cases this reason turns out to

be the result of an idiomatic C method for overcoming C’s lack of generics and implementing

polymorphism. These raw pointers could be converted to safe references by introducing

generics or traits to implement polymorphism.

• The raw pointer is passed as an argument to, or returned from, an external function call.

These raw pointers can only be converted into safe references by replacing the external call.

• The raw pointer is used in pointer arithmetic. Because arrays in C decay to pointers, this

reason captures most array accesses (unless the array has a fixed size known at compile time).

Rust does not allow pointer arithmetic on safe references, but these raw pointers could be

converted to safe references if we can convert the pointer arithmetic into safe array slices.

In our data collection we group the first two categories above into a single category named

Lifetime because converting these raw pointers into safe references requires computing the same

information for both categories and does not involve much invasive code transformation beyond

changing the pointer declarations and inserting lifetime information. Note that deriving the lifetime

information is needed for making pointers safe in all categories, so Lifetime specifically denotes

pointers that do not fall into any other category. The remaining categories are named VoidPtr,
ExternPtr, and PtrArith respectively. For each category of raw pointer we collect the following

information, using the same methodology as for Section 2.2:

(1) Number of declared pointers involved in that category (Table 4);

(2) Number of dereferences of pointers in that category that appear in the code (Table 5);

(3) Number of unsafe functions that use pointers from that category (Table 6).

A pointer may be contained in multiple categories (e.g., a pointer returned by malloc that

undergoes pointer arithmetic and is then passed to an external function). As in Table 3, we split our

counts into pointers that uniquely belong to a particular category (∃!) and those that belong to that
category but also others (∃≥2 ). A raw pointer may be involved in multiple overlapping causes, so the

sum of the other columns is greater than the Total column for all three table. Because the Lifetime
category contains only pointers not involved in other categories we only give the ∃! column for it.

For counting the number of unsafe functions in Table 6 we only consider those functions for which

raw pointers are the only reason for their unsafety; that is, we do not consider functions that use

global variables, unsafe cast, inline assembly, or read from a C-style union. “Using” a pointer means

any one of declaring (as a parameter or in the function body) or dereferencing the pointer. As a

reminder, we consider a function to use a pointer either if the function does so directly, or calls

(directly or transitively) a function that uses the pointer.

To determine how the pointers are being used we implemented and executed a flow-insensitive,

field-based taint analysis based on Steensgaard-style pointer analysis [Steensgaard 1996] and Rust’s

type system [The Rust developers [n.d.]]. We chose a flow-insensitive, equality-based analysis

because all values that flow into a variable and from the variable are necessarily of the same type,

and if any one of those values is used for a reason on our list then that reason forces that variable

and all of the places its value flows to be a raw pointer. We consider a pointer to belong to a

particular category (Lifetime, VoidPtr, ExternPtr, or PtrArith) if the pointer may contain a
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Table 4. Raw pointer declarations, grouped by category. ∃! and ∃≥2 are explained in Section 2.2. Lifetime
category contains only unique (∃!) causes by definition. The percentages are relative to the Total column.

Program VoidPtr PtrArith ExternPtr Lifetime Total

∃! ∃≥2 ∃! ∃≥2 ∃! ∃≥2 ∃!

qsort 0
0%

0
0%

2
50%

0
0%

0
0%

0
0%

2
50%

4

grabc 0
0%

0
0%

1
8%

0
0%

5
38%

0
0%

7
54%

13

libcsv 7
19%

10
27%

0
0%

7
19%

2
5%

3
8%

18
49%

37

urlparser 0
0%

70
89%

0
0%

70
89%

4
5%

70
89%

5
6%

79

RFK 0
0%

0
0%

1
50%

0
0%

1
50%

0
0%

0
0%

2

genann 0
0%

61
84%

0
0%

62
85%

6
8%

62
85%

5
7%

73

xzoom 0
0%

24
83%

1
3%

25
86%

3
10%

25
86%

0
0%

29

lil 1
0%

314
72%

60
14%

316
72%

10
2%

317
72%

50
11%

438

snudown 0
0%

159
65%

2
1%

161
66%

47
19%

156
64%

31
13%

244

json-c 13
4%

227
76%

1
0%

227
76%

9
3%

211
71%

41
14%

297

bzip2 43
19%

89
39%

47
21%

70
31%

9
4%

89
39%

37
16%

227

libzahl 9
2%

324
71%

114
25%

322
70%

3
1%

319
70%

7
2%

457

TI 15
2%

41
5%

724
84%

41
5%

4
0%

41
5%

82
9%

866

tinycc 18
1%

1100
81%

16
1%

1094
81%

24
2%

1084
80%

191
14%

1352

optipng 12
1%

1016
72%

121
9%

987
70%

51
4%

1013
72%

207
15%

1407

tmux 265
6%

3550
76%

17
0%

3311
71%

177
4%

3554
77%

622
13%

4645

libxml2 451
5%

8332
84%

171
2%

7729
78%

152
2%

8336
84%

839
8%

9950

Total 834
4%

15317
76%

1276
6%

14422
72%

507
3%

15280
76%

2142
11%

20116

Table 5. Raw pointer dereferences, grouped by category. ∃! and ∃≥2 are explained in Section 2.2. Lifetime
category contains only unique (∃!) causes by definition. The percentages are relative to the Total column.

Program VoidPtr PtrArith ExternPtr Lifetime Total

∃! ∃≥2 ∃! ∃≥2 ∃! ∃≥2 ∃!

qsort 0
0%

0
0%

6
60%

0
0%

0
0%

0
0%

4
40%

10

grabc 0
0%

0
0%

2
10%

0
0%

4
19%

0
0%

15
71%

21

libcsv 0
0%

26
15%

0
0%

26
15%

0
0%

17
10%

148
85%

174

urlparser 0
0%

2
3%

0
0%

2
3%

0
0%

2
3%

58
97%

60

RFK 0
0%

0
0%

24
100%

0
0%

0
0%

0
0%

0
0%

24

genann 0
0%

312
92%

22
6%

313
92%

4
1%

313
92%

0
0%

339

xzoom 0
0%

37
22%

23
13%

114
66%

12
7%

105
61%

23
13%

172

lil 0
0%

895
54%

127
8%

897
54%

8
0%

897
54%

636
38%

1668

snudown 0
0%

489
58%

35
4%

493
59%

185
22%

474
56%

129
15%

842

json-c 9
0%

1639
89%

39
2%

1646
89%

56
3%

1433
78%

93
5%

1843

bzip2 1704
45%

1192
32%

173
5%

627
17%

11
0%

1195
32%

679
18%

3764

libzahl 1
0%

1220
50%

1183
48%

1220
50%

22
1%

1191
48%

31
1%

2457

TI 426
23%

184
10%

1237
67%

184
10%

0
0%

184
10%

0
0%

1847

tinycc 28
0%

4525
80%

122
2%

4522
80%

9
0%

4491
80%

946
17%

5632

optipng 5
0%

5212
86%

203
3%

5043
83%

36
1%

5208
86%

606
10%

6062

tmux 1002
5%

17687
82%

131
1%

16449
76%

345
2%

17694
82%

2486
11%

21658

libxml2 986
2%

45764
87%

372
1%

41475
79%

235
0%

45771
87%

5175
10%

52546

Total 4161
4%

79184
80%

3693
4%

73011
74%

927
1%

78975
80%

11025
11%

99109

value that is potentially obtained from a source relevant to that category (e.g., the result of a pointer

arithmetic operation, the return value of an external call, a value of type * const void or * mut
void) or if its value may flow into a sink relevant to that category (e.g., pointer arithmetic, or an

argument to an external call, or a value that is cast to a void pointer).
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Table 6. Functions using raw pointers in a given category. ∃! and ∃≥2 are explained in Section 2.2. Lifetime
category contains only unique (∃!) causes by definition. The percentages are relative to the Total column.

Program VoidPtr PtrArith ExternPtr Lifetime Total

∃! ∃≥2 ∃! ∃≥2 ∃! ∃≥2 ∃!

qsort 0
0%

0
0%

2
67%

0
0%

0
0%

0
0%

1
33%

3

grabc 0
0%

0
0%

0
0%

0
0%

1
50%

0
0%

1
50%

2

libcsv 1
6%

5
28%

0
0%

3
17%

0
0%

4
22%

12
67%

18

urlparser 0
0%

5
71%

0
0%

5
71%

0
0%

5
71%

2
29%

7

robotfindskitten 0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

2
100%

2

genann 0
0%

6
67%

0
0%

6
67%

0
0%

6
67%

3
33%

9

xzoom 0
0%

9
100%

0
0%

5
56%

0
0%

8
89%

0
0%

9

lil 1
1%

62
79%

9
12%

61
78%

0
0%

62
79%

6
8%

78

snudown 0
0%

47
85%

0
0%

47
85%

2
4%

47
85%

6
11%

55

json-c 6
8%

50
65%

0
0%

50
65%

1
1%

47
61%

20
26%

77

bzip2 7
17%

28
68%

2
5%

19
46%

0
0%

28
68%

4
10%

41

libzahl 0
0%

79
88%

9
10%

79
88%

0
0%

79
88%

2
2%

90

tulipindicators 2
1%

3
2%

96
66%

3
2%

0
0%

3
2%

45
31%

146

tinycc 3
3%

76
64%

5
4%

75
63%

0
0%

65
55%

35
29%

119

optipng 4
2%

175
67%

12
5%

171
66%

5
2%

177
68%

62
24%

260

tmux 26
5%

483
88%

2
0%

467
85%

7
1%

482
88%

31
6%

549

libxml2 20
3%

532
68%

6
1%

492
63%

7
1%

535
69%

210
27%

779

Total 70
3%

1560
70%

141
6%

1483
66%

23
1%

1548
69%

441
20%

2241

Tables 4 to 6 contain the results of our analysis. Tables 4 and 5 can be used to show that 77% of

raw pointer declarations, and 80% of raw pointer dereferences use pointers that are (sometimes

indirectly) involved in multiple causes (these percentages are obtained by subtracting all unique

causes from the total in each table). The highest unique cause of raw pointer declarations and

dereferences is the Lifetime category (9.5% and 10.0% respectively). However, the most prominent

cause may depend on the program. For example, the highest contributing categories (in all 3 metrics)

are VoidPtr in bzip2 which uses void * for polymorphism in order to share code between encoding

and decoding stages, and PtrArith in TI which is a time series analysis library using and passing

around dynamically allocated arrays. Finally, 70% of the functions use raw pointers for more than

one reason, and 20% of these functions use pointers stemming from only Lifetime.

2.3.2 External Function Calls. Removing unsafety due to external function calls can only be done by

replacing those external calls. We investigated our corpus prorgrams in an effort to prioritize which

external functions would be most beneficial to replace. The extended version of this paper [Emre

et al. 2021b] goes over the prevalence of external functions and which external functions have the

highest impact on safety. To summarize our findings, the programs collectively declare 409 external

functions; 73% of the external functions are unique to one program; and only 11 functions (namely

fprintf, strcmp, memset, printf, strlen, strncmp, exit, memcpy, realloc, fopen, and fclose)
are used in more than half of the programs. These 11 functions account for 43% of all external

function calls, indicating that looking at the functions used across many programs might be a useful

heuristic for picking which functions to replace with safe alternatives first. Finally, the external

functions used in most programs and the external functions having the highest impact (in terms of

functions that call that external function, directly or indirectly) implement string manipulation,

I/O, or error handling.

2.3.3 C-style Unions. We manually inspected all C-style unions declared in our corpus programs.

Most of these were defined by the C developers with accompanying tag data in order to manually
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implement a tagged union. In some programs, the tag information was not stored with the union

data but rather inferred from invariants that hold at a given program point. libxml2 contains

declarations for pthreads-related unions used in external calls; however, these unions are used only

by pthreads functions and never read directly by the Rust program so they do not contribute to

unsafety. Apart from these, none of the unions in our programs are passed to or obtained from

external functions, and we conjecture that they can be replaced with safe tagged unions (Rust

enums) to reduce the use of C-style unions in the program. However, this transformation would

yield highly un-idiomatic Rust code which would check the type of the union twice in the cases

where there is an explicit tag that the C program checks.

2.3.4 Unsafe Casting. We inspected the calls to mem::transmute generated by c2rust. There are
two uses of unsafe casting in the translated corpus programs: (1) converting 8-bit byte arrays to C

character arrays (different from Rust strings) which corresponds to 79% (456 out of 576) instances

of unsafe casting, and (2) converting between function pointers
8
and void * which corresponds to

the remaining 21% (120) unsafe casts. The first option is safe on architectures using 8-bit unsigned

characters (most modern architectures), and can be put behind a wrapper function.

2.4 Observations and Discussion
From Table 3, we can see that most functions are affected by multiple categories of unsafety: for each

category, the number of functions uniquely affected by that category is 0–1% of the total number of

functions affected by that category, with RawDeref being an outlier at 16%. Unions, inline assembly,

and casts never appear by themselves at all. These numbers indicate that making translated Rust

programs safer is a multi-faceted problem, in that fixing a single category of unsafety will not make

a large impact on the number of unsafe functions. Only by fixing multiple categories can we hope

to make a significant difference. It is also possible that division into finer categories would yield a

categorization which is less inter-dependent, though we believe these categories are sound, given

that they are rooted in the sources of unsafety defined directly by the Rust developers.

Because an effective method for making translated Rust programs safe needs to handle multiple

categories of unsafety, an interesting question is how to prioritize which categories to handle.

To answer this question, we graph the cumulative impact of fixing categories highest-to-lowest

according to the following heuristic order of impact: raw pointer dereference, memory allocation,
extern calls, access to globals, unsafe casts, access to unions, inline assembly. This ordering was selected
by searching through all possible orderings and finding the one where each added cause had the

highest added impact in terms of the cumulative number of functions made safe. We then adjusted

this ordering by moving allocations to the second place from the fourth place, as allocations are a

source of raw pointers with a simple fix (i.e., rewriting them to create a new Vec or Box).
To assess the potential of solving these problems in this order, we calculate the cumulative impact

of how many unsafe functions become safe as each of these categories of unsafety are eliminated.

Figure 1 shows the results of this calculation. We include both the results for all functions in our

corpus programs, and the result for the four largest programs in order to demonstrate the variability

of the results. In this graph we include the functions unnecessarily marked unsafe. The results on

the graph indicate that, in order to make more than half of the functions safe, we need to handle

the four most common sources in our list. Also, the the graph (along with the tables) shows that

the impact of unsafe casts and C-style unions vary considerably depending on the program.

An important issue for translating C to safer Rust is how the translation can derive the necessary

information required to produce verifiably safe code. Ultimately, unsafety stems from the fact

8
Function pointers are represented in Rust as optional references rather than raw pointers, so casting them directly to and

from raw pointers is unsafe.
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Fig. 1. Cumulative percentage of functions made safe by fixing the given unsafety category. The “Total” line
shows this number for all functions across all programs.

that the compiler does not have enough information about a piece of code (e.g., the underlying

types in the case of void pointers, or the code being executed in the case of external functions).

While some unsafety is likely unavoidable (e.g., unsafety needed to implement a memory allocator),

other unsafety is rooted in C’s lack of language features. For example, C’s untagged unions could

be safety replaced with tagged unions, and certain uses of void pointers could be safety replaced

with generics. In all cases except external functions and internal assembly, the translator would

have access to the code being executed and thus at least in theory could use static analysis to

derive the information required to make the translated program safe. However, some C programs

would require a fairly deep analysis and rewriting strategy that operates at a higher level than just

translating the direct operational semantics of the program.

For example, a C program that uses a pointer-based graph data structure cannot be trivially

translated to Rust because Rust’s linear type system cannot represent such a data structure. Rust

does have mechanisms for representing graphs like this (using alternative data structures or using

hand-verified unsafe code in the Rust standard libraries), but translating the C program to use

those mechanisms requires a more holistic view of the code. Similarly, we have to account for

the different abstractions that the two languages use. Idiomatic safe Rust code and safe Rust code

translated directly from C can look very different because of the abstractions that Rust and the

Rust standard library provide. For example, safe code translated from C may use while loops and

indexing to go over arrays and other data structures whereas an idiomatic Rust program would use

mutable and immutable iterators and higher-order functions such as map for the same purpose.

Nevertheless, translating C to safer Rust is a worthwhile goal and, we believe, a reasonable

endeavour to undertake. We show in the next section a first attempt at doing so that targets one

particular source of unsafety with good success. Addressing the remaining sources of unsafety, and

the issues discussed above, will provide a rich vein of research problems for some time to come.

3 TURNING RAW POINTERS INTO SAFE REFERENCES
In this section we describe a first attempt to automatically translate a C program into a safer

Rust program, building on top of the c2rust syntactic translation from C to completely unsafe

Rust. While our study shows that addressing only a single category of unsafety is insufficient

for removing the majority of unsafety in translated programs, we nonetheless need a starting

point. Since we observe that raw pointer dereferences are the biggest sole contributor to unsafety,

and furthermore that rewriting raw pointers to safe references requires resolving ownership and

lifetime information, we decided to start with addressing the Lifetime category. Lifetime will
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have an immediate impact on some programs, and provide much-needed lifetime information to

reason about other forms of unsafety. Thus, our goal is to translate a subset of the raw pointers in

the Lifetime category to safe references.

A raw pointer can be converted into a safe reference if, in the resulting rewritten program, the

Rust compiler can prove that the reference guarantees a single owner and can also derive the

appropriate lifetime for the object being referred to. One possible approach would be to implement

a static analysis for either the original C program or the translated unsafe Rust program to compute

this information; however, the drawbacks of such an approach are: (1) designing and implementing

an efficient, useful analysis that can reason about aliasing and lifetime information in conformance

with Rust’s sophisticated type system is highly non-trivial; and (2) even if the implemented analysis

can prove safety, that doesn’t matter unless the Rust compiler can also prove safety, i.e., the analysis
must be tuned to be no more precise than the Rust compiler.

Our key insight is that we can piggy-back on top of the Rust compiler and allow it to derive the

information we need to infer which Lifetime raw pointers can be made safe. To do so, we first

optimistically rewrite the unsafe Rust program to convert all of the relevant raw pointers into safe

references, making optimistic assumptions about mutability, aliasing, and lifetimes. This optimistic

version is very unlikely to compile—but the errors that the Rust compiler derives while attempting

to compile it allow us to refine our initial optimistic program into a more realistic version. By

iterating this process in a loop, we essentially use the Rust compiler as an oracle to continually

refine the program until it passes the compiler. For this first attempt we do not try to introduce any

additional memory management mechanisms (e.g., reference counting) that might allow more raw

pointers to become safe, focusing purely on converting raw pointers into safe references with the

same memory representation and performance characteristics; future work will investigate these

other possibilities.

During our translation, we assume that any pointers passed to an API are valid pointers (null or
a valid reference to an object) if the program dereferences them, because dereferencing an invalid

pointer would result in undefined behavior in both C and Rust. Therefore, these raw pointers could

be converted to safe references without changing the defined program behavior, if their use does

not invalidate Rust’s borrow checker rules.

Our technique consists of three stages after the c2rust translation of the original C program:

(1) Connect the definitions and uses of types and functions across modules, and remove unnec-

essary unsafety and mutability markers. (Section 3.2)

(2) Determine initial lifetimes to convert unsafe raw pointers into safe references. (Section 3.3)

(3) Iteratively rewrite the program to resolve lifetime inference and borrow checking errors.

(Section 3.4)

The rest of this section is structured as follows: We (1) give a description of our algorithm

(Section 3.1), explain the algorithm with a running example (Sections 3.2 to 3.4), and finally we

discuss the algorithmic complexity of our technique (Section 3.5). More details of our technique is

given in [Emre et al. 2021a].

3.1 Description of Our Algorithm
Our algorithm uses the lattice of configurations described in Figure 2. A configuration is a mapping

from program locations to the kinds of pointers they are converted to (borrowed, owned, or

raw), along with corresponding lifetime constraints. A configuration maps program locations (i.e.,

variables, parameters, return values, struct fields, and expressions) to the kinds of pointers they

should have. In our representation of locations, we use HIR IDs used by the Rust compiler to

represent expressions (the set Expr) using unique identifiers. This allows us to keep track of any
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Configuration = (Location→ PointerKind) × (Function × LifetimeVar→P (LifetimeVar))
PointerKind = {borrowed, owned, raw} where borrowed ⊏ owned ⊏ raw

Location ::= 𝑥 | 𝑒 | param 𝑓 𝑛 | return 𝑓 | access 𝑡 fld
𝑓 ∈ Function, 𝑡 ∈ TypeName, 𝑛 ∈ N, 𝑥 ∈ Variable, 𝑒 ∈ Expr

Fig. 2. The lattice of configurations representing the fixes we apply based on compiler errors. LifetimeVar

denotes lifetime variables. Variable and Expr denote the variables and the expressions in the program.
TypeName represents a struct name, and access 𝑡 fld denotes the field-based location for accessing the field
fld of values of type 𝑡 . P is the powerset operation.

arbitrary expression involved in a borrow conflict, and promote its pointer kind to owned or raw in

a lightweight manner. The lattice of configurations are ordered lexicographically (first, according

to how they map locations to pointer kinds, then if that mapping is the same, according to the

set of lifetime constraints they have). Each of the maps in the configurations are defined in the

structurally in the classical way: 𝑓 ⊏ 𝑔 if 𝑓 (𝑥) ⊏ 𝑔(𝑥) for all elements 𝑥 in the domain of 𝑓 and 𝑔.

We use the subset lattice when ordering sets of lifetime variables. Because there are finitely many

locations, pointer kinds, and lifetime variables in a given program, the lattice of configurations is

finite.

Using the locations described in Figure 2, we implement field-based, context-insensitive taint

analyses. The data flow constraints for our taint analyses are derived from the typing, type equiva-

lence and subtyping constraints in Oxide (Figures 4, 5, and 6 in [Weiss et al. [n.d.]]). We use the type

equivalence constraints to propagate which locations in the program should have a raw pointer

using a Steensgaard-style alias analysis [Steensgaard 1996], and use the subtyping constraints to

propagate which locations should be owned using an Andersen-style analysis [Andersen 1994].

We implement the initial optimistic rewrite (Section 3.3), and the iterative rewrite (Section 3.4)

as a single algorithm, known as ResolveLifetimes (Figure 3). ComputeTaintAnalysis computes

the taint analysis from Section 2.3.1 and a subset-based variant of it. The rest of the functions in

the algorithm are described in Sections 3.2 to 3.4. ⊥ is used as the initial configuration, wherein all

locations are mapped to borrowed pointers, and there are no lifetime constraints. Then, based on

the current configuration and analysis results, we rewrite the program using the information on

which pointers are borrowed, owned, or raw, and similarly add any inferred lifetime constraints to

function signatures. This rewrite process is described further in Sections 3.3 and 3.4, and we give

the precise rewrite rules in [Emre et al. 2021a]. We then run the compiler on the rewritten program.

If there are any compiler errors, we compute a set of fixes (represented as a configuration) based

on found borrow conflicts and unproven constraints. We then update our configuration, re-run the

analyses if any pointer kinds have changed, and iteratively repeat the process until no compiler

errors result. As an optimization, if no pointer was promoted then we re-use the old analysis results

because we do not need to propagate any new rawness or ownership information.

3.1.1 Computing Fixes from Compiler Errors. We get three kinds of errors from the compiler: (1)

lifetime constraints that could not be derived, (2) object references which outlive the object they

reference (use after move), and (3) concurrent access involving mutable borrows (borrow conflicts).

The compiler infers types and lifetimes locally in the type checking stage, and if it can successfully

infer the lifetimes (there are no errors of the first kind) then it runs the borrow checker which

reports errors of the latter two kinds. The specific errors we get, and the fixes we apply, are detailed

in this section. We apply the fixes by adding them to the new configuration we compute (called

𝑓 𝑖𝑥𝑒𝑠 in Figure 3). The error numbers refer to the ones in Rust Compiler Error Index [noa [n.d.]].
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cfg ← ⊥
ComputeTaintAnalysis(cfg)
ComputeStructLifetimes(cfg)
loop

RewriteProgram(cfg)
errors← RunRustCompiler()
if errors = ∅ then Halt.

fixes← ResolveErrors(errors)
cfg ← cfg ⊔ fixes
if fixes promotes a location to owned or raw then

ComputeTaintAnalysis(cfg)
ComputeStructLifetimes(cfg)

Fig. 3. Our algorithm for ResolveLifetimes, the parts of our method after merging struct definitions and
resolving extern functions.

The following list details the case where the compiler cannot infer or prove a lifetime constraint.

We resolve these errors by adding the constraint in question to the new configuration.

• Lifetimes inside two types mismatch (E0308). The compiler tries to type check 𝜏1 <: 𝜏2 but

it cannot prove the constraint because some lifetimes in 𝜏1 and 𝜏2 need to have an outlives

relationship. The specific missing outlives relationships are reported as lifetime constraints

of the form 'a: 'b.

• Compiler cannot infer an appropriate lifetime because of unsatisfied constraints (E0495). This

is similar to E0308, where the lifetime 'a of an object does not match the expected lifetime 'b.

So, we resolve it by adding 'a: 'b.

• Lifetime mismatch (E0623). Similar to E0308, but the compiler reports it when comparing

lifetimes during borrow checking instead of comparing two types during type checking.

• Given value needs to live as long as 'static (E0759). We add 'a: 'static for each lifetime 'a

that appears in the type.

The following errors indicate that a reference outlives the object it borrows. In these cases, we

mark the reference as owned.

• A reference to a local variable is returned (E0515). Here we make the return value of the

associated function an owned pointer.

• A reference is used after the referred variable is dropped (E0716), i.e. use-after-free. We make

the reference an owned object so that the referred value is moved and lives long enough.

The following errors indicate borrow conflicts. To address them, we promote the relevant

reference to be a raw pointer.

• Two mutable references to an object are alive at the same time (E0499).

• A mutable and an immutable reference to an object are alive at the same time (E0502).

In the cases E0716, E0499, E0502 above, we find the HIR Id of the relevant expression 𝑒 , and add

𝑒 ↦→ raw or 𝑒 ↦→ owned to 𝑓 𝑖𝑥𝑒𝑠 , depending on the error.

3.2 Connecting Functions and Data Structures Across Modules
This and the following two sections explain our technique in relation to an example C program

shown in Figure 4a, which implements a binary search tree. Figure 4b shows the result of running
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1 // bst.h: BST node definition

2 typedef struct node_t {

3 node_t* left;

4 node_t* right;

5 int value;

6 };

7

8 node_t* find(int value , node_t* node);

9 void insert(int value , node_t* node);

10

11 // bst.c: BST implementation

12 #include "bst.h"

13

14 node_t* find(int value , node_t* node) {

15 if (value < node ->value && node ->left) {

16 return find(value , node ->left);

17 } else if (value > node ->value && node ->

right) {

18 return find(value , node ->right);

19 } else if (value == node ->value) {

20 return node;

21 }

22 return NULL;

23 }

24

25 void insert(int value , *node_t node) {

26 // Implementation omitted for brevity.

27 }

28

29 // main.c: program entry point

30 #include "bst.h"

31

32 int main() {

33 node_t* tree = malloc(sizeof(node_t));

34 tree ->value = malloc(sizeof(int));

35 *(tree ->value) = 3;

36 insert(1, tree);

37 insert(2, tree);

38 *(find(3, tree)->value) = 4;

39 return 0;

40 }

(a) A C program implementing a binary search
tree. We omit the implementation of insert for
brevity.

1 // bst.rs

2 use std::os::raw::c_int;

3

4 #[ derive(Copy ,Clone)]

5 pub struct node_t {

6 pub left: *mut node_t ,

7 pub right: *mut node_t ,

8 pub value: c_int ,

9 }

10

11 pub unsafe fn find(mut value: c_int , mut node:

12 *mut node_t) -> *mut node_t {

13 /* ... */

14 }

15

16 pub unsafe fn insert(mut value: c_int , mut

node:

17 *mut node_t) { /* ... */ }

18

19 // main.rs

20 use std::os::raw::c_int;

21 extern "C" {

22 fn find(mut value: c_int , mut node:

23 *mut node_t) -> *mut node_t;

24 fn insert(mut value: c_int , mut node:

25 *mut node_t);

26 }

27

28 // duplicate definition of node_t

29 #[ derive(Copy ,Clone)]

30 pub struct node_t {

31 pub left: *mut node_t ,

32 pub right: *mut node_t ,

33 pub value: c_int ,

34 }

35

36 pub unsafe fn main_0 () -> int { /* ... */ }

(b) The Rust program produced from Figure 4a.
Function bodies, main, and main_0 are omitted for
brevity, as are compiler directives for C compati-
bility (e.g. for disabling name mangling, ensuring
C ABI, and structure field alignment).

Fig. 4. An example a of C program translated to Rust by c2rust.

c2rust on the C program. We will step through each stage of our technique in the remainder of

this section, demonstrating on the given example.

The original C program may consist of multiple compilation units (e.g., Figure 4a has two: bst.c
and main.c). c2rust translates each compilation unit separately into its own Rust module (e.g.,

Figure 4b has bst.rs and main.rs). However, unlike C, all Rust modules in a program are compiled

together in the same compilation unit. Because c2rust translates each C compilation unit separately,

the translated modules contain (1) duplicate data structure declarations from shared header files;

and (2) functions declared as extern because they are defined in a different module, even though

the definitions are actually available during compilation. In Figure 4b, note that main.rs contains

a duplicate declaration of node_t and declares both find and insert as extern functions. All calls

to declared extern functions must be marked unsafe, regardless of the fact that the functions are
not truly extern. The result is that, even if we manage to make find and insert safe in the bst.rs
module, main_0 must remain unsafe because it contains calls to those functions and they were

declared extern in the main.rs module.
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1 // bst.rs

2 use std::os::raw::c_int;

3

4 #[ derive(Copy ,Clone)]

5 pub struct node_t {

6 pub left: *mut node_t ,

7 pub right: *mut node_t ,

8 pub value: c_int ,

9 }

10

11 pub unsafe fn find(value: c_int , node: *mut node_t) -> *mut node_t {

12 if value < (*node).value && !(*node).left.is_null () {

13 return find(value , (*node).left)

14 } else {

15 if value > (*node).value && !(*node).right.is_null () {

16 return find(value , (*node).right)

17 } else if value == (*node).value {

18 return node

19 }

20 }

21 return 0 as *mut node_t;

22 }

23 pub unsafe fn insert(value: c_int , node: *mut node_t) { /*...*/ }

24

25 // main.rs

26 use std::os::raw::c_int;

27 use bst::{node_t , insert , find};

28

29 pub unsafe fn main_0 () -> int {

30 let mut tree = malloc (::std::mem:: size_of::<node_t >()) as * mut node_t;

31 (*tree).value = malloc (::std::mem:: size_of::<c_int >()) as * mut c_int;

32 *(* tree).value = 3;

33 insert(1, tree);

34 insert(2, tree);

35 *(* find(3, tree)).value = 4;

36 return 0;

37 }

Fig. 5. The Rust program from Figure 4b after deduplicating struct definitions and converting extern functions
to imports. The unnecessary mutability annotations have been removed from the function arguments.

The immediate solution is to remove the extern declarations and replace them with imports

from the modules in which those functions are defined. However, doing so can cause a type

error if the functions use a data structure that has been duplicated across modules. Rust’s type

system is nominal, and these duplicated definitions are treated as separate types. In Figure 4b

the type bst::node_t and the type main::node_t are two different types; because the formerly

extern functions are now imported and use the duplicated type, there is now a type error in the

example program. In order to fix this issue, we need to detect and deduplicate these data structure

declarations. After this step, we remove unnecessary mut markers and unsafe markers. For our

example, the only unnecessary mut markers are in the arguments of find and insert. All the unsafe
markers in the example code are still necessary due to raw pointer dereferences. Figure 5 shows

our example after this process.

3.3 Initial Optimistic Rewrite
The next stage is to rewrite the program into a version with no unsafe annotations due to Lifetime
raw pointers (unsafe annotations due to other categories of unsafety will remain). Henceforth we

will just refer to “raw pointers”; this term should be taken as Lifetime raw pointers. The rewriting

process is optimistic in the sense that it will likely result in a non-compilable program. The first

step of this stage is to rewrite raw pointer declarations (e.g., data structure fields and function

parameters) into reference declarations. Specifically, we convert the raw pointers into optional
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references in order to account for null pointer values: Option<&T>, Option<&mut T> and Option<Box<T>>

represent immutably borrowed, mutably borrowed, and owner pointers, respectively. We assume

for this stage that all declarations are borrowed; the third, iterative stage may later convert them

into owners instead.

When declaring a reference in function signatures or data type definitions, we must provide

its lifetime information. This information includes the lifetime of the reference itself and also the

information for any referenced types that are themselves parameterized by lifetime. Our goal for

this stage is to generate lifetime information that minimally constrains the declarations, in order to

start with the most optimistic lifetime assumptions.

For each raw pointer data structure field we provide a lifetime based on its type, using a different

lifetime variable for each type.
9
We also fill in lifetime type parameters, using the same lifetime

variables for all instances of the same type. Mutably borrowed references are not copyable or

cloneable, so we remove the #[derive(Copy,Clone)] annotation from any affected data structures. For

our example program, the end result of rewriting the node_t data structure is:

1 pub struct node_t <'a1, 'a2> {

2 pub left: Option <&'a1 mut node_t <'a1, 'a2>>,

3 pub right: Option <&'a1 mut node_t <'a1, 'a2>>,

4 pub value: Option <&'a2 mut c_int >,

5 }

Once the data structures are rewritten, we rewrite the function signatures in accordance with

the new declarations, again making all raw pointers into borrows. Unlike data structure fields, for

function signatures we use a unique lifetime for each parameter. For our example, the rewritten

function signatures for find and insert are:

1 fn find <'a1, 'a2, 'a3, 'a4, 'a5, 'a6 >(value: c_int , mut node: Option <&'a1 mut node_t <'a2, 'a3 >>) ->

2 Option <&'a4 mut node_t <'a5, 'a6 >>;

3 fn insert <'a1, 'a2, 'a3 >(value: c_int , mut node: Option <&'a1 mut node_t <'a2, 'a3 >>);

The signature of main_0 does not change, since it does not involve any pointers. Next we rewrite

function bodies, which entails four types of rewrites:

(1) We rewrite any call to malloc that allocates a single object (as opposed to an array) into a call

to Box::new, a standard Rust function for safe heap allocation. We determine which malloc calls

to rewrite by checking for calls that are translated from malloc(sizeof(T)) in the C program.

(2) We delete any call to free if we can replace all pointers that are freed at that call site with

safe references. If we cannot replace all such pointers, then we need to keep the call to free

so we roll back any pointers reaching this free that were previously rewritten.

(3) We rewrite any equality comparisons between references, which by default are value equality

checks in Rust (i.e., checking equality of the objects being referenced), into a reference

equality check (i.e., checking whether two references refer to the same object). This rewrite

preserves the intended semantics of the original program.

(4) Dereferences must be rewritten to unwrap the optional part of the reference (recall that we

replaced the raw pointer with an optional reference). Unwrapping the option consumes the

original Option object because Option<T>, unlike raw pointers, is not automatically copyable.

Therefore, we do the following to avoid consuming the original object in the contexts that it

is not assigned to or deliberately consumed:

9
We could also give each field a unique lifetime, but this type-based heuristic works well empirically and makes it easy to

handle recursive type declarations.
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1 pub fn borrow <'b, 'a: 'b, T>(p: &'b Option <&'a mut T>) -> Option <&'b T> {

2 p.as_ref ().map(|x| &**x)

3 }

4 pub fn borrow_mut <'b, 'a: 'b, T>(p: &'b mut Option <&'a mut T>)

5 -> Option <&'b mut T> {

6 p.as_mut ().map(|x| &mut **x)

7 }

Fig. 6. Helper functions which assist in rewriting pointers to references. They allow borrowing an optional
reference for a shorter lifetime, where ’a is the original object’s lifetime and ’b is the borrowed object’s
lifetime.

• When using an immutable reference, we clone it so the original object is not destroyed.
10

• When using a mutable reference, we make a mutable or immutable borrow depending on

the context it is used in. We describe how we create these borrows below.

To helpwith re-borrowingmutable references, we use the helper functions borrow and borrow_mut
defined in Figure 6. For each pointer p in the original program that we converted to a mutable

reference, we perform the following rewrites:

• If p is passed to a mutable context (a context requiring a &mut T), we rewrite p to borrow_mut(p).

• if p is passed to an immutable context (a context requiring a &T), we rewrite p to borrow(p).

• if p is dereferenced, we rewrite *p as **p.as_mut().unwrap() to get a mutable reference and

immediately dereference it. If it is dereferenced in an immutable context, we use as_ref instead

of as_mut. Note that unwrap, as_mut, and as_ref all come from the Rust standard library.

We rewrite null pointers into None, i.e., the Option value that does not contain anything. We

similarly rewrite the null pointer check p.is_null() into p.is_none(). Figure 7 shows our example

program after all of these transformations.

3.4 Iteratively Rewriting the Program until It Compiles
The initial, optimistic rewrite may have resulted in a non-compilable program, i.e., one for which

the Rust compiler cannot prove safety. The last stage of our technique iteratively attempts to

compile the program with the Rust compiler; for each failed attempt we take information from the

compiler errors to selectively rewrite our optimistic changes until we reach a version that compiles.

These rewrites in some cases provide the compiler with more refined lifetime information or modify

reference types, while in other cases we are forced to walk back on the changes and leave some

raw pointers as unsafe. When a version of the program fails to compile, we track the following

information:

• Any additional lifetime constraints the compiler reports. For example, when compiling the

program in Figure 7 the compiler reports that for find there is an additional constraint ’a1
: ’a2, meaning ’a1 needs to outlive ’a2because of the return statement on line 20. For the

next iteration we rewrite the program to explicitly include this constraint and any additional

constraints learned from similar errors.

• The references involved when a reference outlives an object. If the original object is on the

heap, we promote the reference to an owned object on the heap and move the object instead

of borrowing it, i.e., converting from Option<&T> to Option<Box<T>>. If the original object was

on the stack, then we demote these references to raw pointers.

10
We could immutably borrow the reference. However, cloning an immutable reference is a trivial operation (as Option<&T>

implements Copy), and the resulting reference has the same lifetime. Cloning avoids needing more helpers like borrow.
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1 // bst.rs

2 use std::os::raw::c_int;

3

4 pub struct node_t <'a1, 'a2> {

5 pub left: Option <&'a1 mut node_t <'a1, 'a2>>,

6 pub right: Option <&'a1 mut node_t <'a1, 'a2>>,

7 pub value: Option <&'a2 mut c_int >,

8 }

9 impl <'a1, 'a2> std:: default :: Default for node_t <'a1, 'a2> { /* ... */ }

10 pub fn insert <'a1, 'a2, 'a3 >(mut value: c_int ,

11 mut node: Option <&'a1 mut node_t <'a2, 'a3 >>) { /* ... */ }

12

13 pub fn find <'a1, 'a2, 'a3, 'a4, 'a5, 'a6 >(mut value: c_int , mut node: Option <&'a1 mut node_t <'a2, 'a3 >>)

14 -> Option <&'a4 mut node_t <'a5, 'a6>> {

15 if value < **(** node.as_ref ().unwrap ()).value.as_ref ().unwrap () && !(** node.as_ref ().unwrap ()).left.

is_none () {

16 return find(value , borrow_mut (&mut (*node.unwrap ()).left))

17 } else {

18 if value > **(** node.as_ref ().unwrap ()).value.as_ref ().unwrap () && !(** node.as_ref ().unwrap ()).

right.is_none () {

19 return find(value , borrow_mut (&mut (*node.unwrap ()).right))

20 } else { if value == **(** node.as_mut ().unwrap ()).value.as_mut ().unwrap () { return node } }

21 }

22 return None;

23 }

24

25 // main.rs

26 use std::os::raw::c_int;

27 use bst::{node_t , insert , find};

28

29 pub fn main_0 () -> int {

30 let mut tree = Some(Box::new(node_t :: default ()).as_mut ());

31 **(** tree.as_mut ().unwrap ()).value.as_mut ().unwrap () = 3;

32 insert(1, borrow_mut (&mut tree));

33 insert(2, borrow_mut (&mut tree));

34 **(** find(3, borrow_mut (&mut tree)).as_mut ().unwrap ()).value.as_mut ().unwrap () = 4;

35 return 0;

36 }

Fig. 7. The Rust program from Figure 5 after converting raw pointers into references.

• If any rewritten malloc and free calls were involved in the failure. Rewritten calls can fail to

compile when the original C program uses magic numbers or a custom allocation pattern. In

subsequent iterations we do not attempt to rewrite any values that come from these particular

calls to malloc, or that flow into these particular calls to free.

• The references involved in either use-after-move errors or multiple mutable borrow errors.

We rewrite these references back to raw pointers.

When we demote a reference back to a raw pointer, we need to make all other references that

interact with that demoted reference into raw pointers as well. We use the taint analysis from

Section 2.3.1 to propagate the required information about any references we decide to convert back

to raw pointers because of borrow errors. Similarly, if we decide to make a reference owned, all the

values that flow into it must also be owned. We propagate these facts by performing a subset-based

version of the taint analysis we used in Section 2.3.1 and marking the references promoted to owned

references as sinks.

We demonstrate these steps on the example program in Figure 7. For this example we do not

encounter issues involving the last two cases above.

The first compilation attempt fails with a compiler error stating that the following lifetime

constraints are not satisfied: ’a1 : ’a4, ’a5 : ’a2, and ’a6 : ’a3. All of these constraints come

from the return node; statement on line 20, and they are all rooted in the fact that the reference find

returns cannot outlive its argument. Specifically, ’a1 : ’a4 comes directly from the references,
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and the other two constraints come from the fact that the data structures are covariant on their

lifetime arguments and the functions are contravariant on their lifetime arguments. To resolve the

errors we add these constraints to the signature of find and continue iterating.

The second compilation attempt also fails, this time with a compiler error stating that recursive

calls to find require the additional constraints ’a2 : ’a5 and ’a3 : ’a6. We add these constraints

as well, and continue iterating.

The third compilation attempt fails again, with a compiler error stating that we return a value

that cannot outlive borrowing node in lines 16 and 19. To resolve the error we rewrite the borrows in

these dereferences **node.as_mut().unwrap() as *node.unwrap(), ultimately consuming the reference

node. This heuristic works for many of the cases in our corpus programs, but it might create use-

after-move errors later on, in which case we would walk the rewrites back and make the node

parameter of find a raw pointer again. In addition we get another lifetime error indicating that the

variable tree in main function outlives the object it references (line 30), the temporary boxed object.

To fix this error we we convert tree to be an owned object (Option<Box<node_t>>).11 Now that tree is

an owned reference, we rewrite the places it is borrowed as tree.as_mut().map(|b| b.as_mut()) to get

a mutable reference inside the Option without consuming tree. We need to propagate the fact that

tree is now an owned reference to all the values that flow into tree. After using our taint analysis

to propagate this fact, we discover that the box at line 30 should be an owning reference, so we

make that expression own the allocated object by removing the call to as_mut() on that line.

After these rewrites, the program compiles and all raw pointers have been converted into safe

references. Note that we omitted the implementation of insert in this example to keep the number

of steps shorter. Figure 8 shows the final fixed find function, Section 4 of [Emre et al. 2021a] contains

the full fixed program.

1 pub fn find <'a1, 'a2, 'a3, 'a4, 'a5, 'a6 >(mut value: c_int , mut node: Option <&'a1 mut node_t <'a2, 'a3 >>)

2 -> Option <&'a4 mut node_t <'a5, 'a6>>

3 where 'a1: 'a4, 'a5: 'a2, 'a6: 'a3, 'a3: 'a6, 'a2: 'a5

4 {

5 if value < **(** node.as_ref ().unwrap ()).value.as_ref ().unwrap () && !(** node.as_ref ().unwrap ()).left.

is_none () {

6 return find(value , borrow_mut (&mut (*node.unwrap ()).left))

7 } else {

8 if value > **(** node.as_ref ().unwrap ()).value.as_ref ().unwrap () && !(** node.as_ref ().unwrap ()).

right.is_none () {

9 return find(value , borrow_mut (&mut (*node.unwrap ()).right))

10 } else { if value == **(** node.as_mut ().unwrap ()).value.as_mut ().unwrap () { return node } }

11 }

12 return None;

13 }

Fig. 8. The find function after applying all steps of our technique. The rest of the program is same as Figure 7.
We reproduced the full program at this stage on [Emre et al. 2021a] .

Rather than relying on only a taint analysis and compiler errors, we could augment our method

also by region inference, however the final program still needs to be verifiable by the compiler.

To guarantee this, we use the compiler as an oracle to direct the choices our algorithm makes.

From this perspective, we use the taint analysis as an optimization: technically we could do away

with the taint analysis and let type errors guide us in regards to which other types to rewrite, e.g.,

when a raw pointer flows into a borrowed pointer. This would result in many more calls to the

compiler (an intractable number in practice). To reduce the number of calls and to simplify the part

11
We could potentially make it a Box<node_t> without the Option part because it is never assigned to a value containing

None, however we apply the same strategy independent of the position (including struct fields) and we need the optional

types when creating default values for struct fields.
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of the method that processes compiler errors, we use the taint analysis. Also, we are interested in

investigating how much we can do using only the compiler and simple analyses rather than more

sophisticated and complicated custom-implemented analyses. Basing our initial method on simple

analyses lets us gauge if and when more complicated analyses would be necessary.

3.5 Algorithmic Complexity
We analyze the complexity of our algorithm in terms of the number of iterations it performs, as well

as the number of times the taint analysis for propagating inferred pointer kinds is invoked. The

initial step of resolving external types and functions (ResolveImports) has only one iteration, and

uses only a call graph analysis so we do not count it in the analysis here. The algorithm described

in Figure 3 climbs the configuration lattice in each iteration, and it reinvokes the analysis when

the pointer kinds in the configuration change. In the worst case, each location would be promoted

in a separate iteration. The Steensgaard-style taint analysis propagates rawness to all locations

in the same equivalence class according to type equality, so there can be at most 𝑐 iterations that

promote a pointer to be raw, where 𝑐 is the number of equivalence classes. However, each borrowed

location may be promoted separately to an owned pointer in the worst case, so there can be at

most 𝑙 iterations that promote a reference to be owned. So, in the worst case, we climb the lattice

in 𝑂 (𝑐 + 𝑙) iterations that invoke the analysis.
Between two iterations that promote a pointer, we may infer lifetime constraints. In the worst

case, we would infer each lifetime constraint separately. Let 𝑟 = |𝑓1 | + . . .+ |𝑓𝑛 | be the total number of

lifetime variables that appear in function signatures, and |𝑓 | denote the number of lifetime variables

that occur in the signature of a function 𝑓 , where 𝑓1, . . . , 𝑓𝑛 are the functions in the program. Each

lifetime may be bounded by other lifetimes defined in the same function
12
or 'static. As such, there

are |𝑓1 |2+ |𝑓2 |2+ . . .+ |𝑓𝑛 |2 ≤ (|𝑓1 | + |𝑓2 | + . . .+ |𝑓𝑛 |)max𝑖 |𝑓𝑖 | = 𝑟 max𝑖 |𝑓𝑖 | lifetime constraints we may

add. Here, max𝑖 |𝑓𝑖 | is the largest number of lifetime variables that occurs in a function signature.

Because, we use ⊔ to merge the configurations, and because the lattice is lexicographically ordered,

we discard all lifetime constraints when we promote a pointer; in total ResolveLifetimes may have

𝑂 ((𝑐 + 𝑙)𝑟 max𝑖 |𝑓𝑖 |) iterations in the worst case. Note that 𝑙 is the number locations that we may

initially assign to a lifetime, so it is the number of locations that are raw-pointer-typed because of

Lifetime. Empirically, the number of iterations is much lower in our benchmarks, except for the

case of libxml2 which contains large structs with many distinct lifetime parameters which in turn

makes the max𝑖 |𝑓𝑖 | term large.

Termination guarantee. At each stage, either there are no compiler errors (the algorithm

terminates), or the compiler reports one of the errors listed in Section 3.1, meaning the next

iteration will use a larger configuration. There are finitely many configurations, so termination

is guaranteed: it will either yield a safer Rust program, or the original Rust program (wherein all

references are marked raw).

4 EVALUATION
We implement our tool on top of the nightly-2020-10-15 nightly Rust compiler build version

because the compiler API for Rust is not stable. We ran c2rust using an even older version of

the compiler (the newest version that the c2rust supports due to the compiler API instability)

nightly-2019-12-05. We run our experiments on a computer with a 4 GHz Intel Core i7-4790

CPU, with 4 physical cores (8 hyper-threaded). The computer has 32 GB RAM and runs Ubuntu

18.04.

12
We do not process lifetimes in nested functions
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Table 7. Number of unsafe functions due uniquely to using raw pointers. ResolveImports and ResolveLifetimes
are the two phases of our method explained in Section 4.1; the corresponding columns show how many
formerly unsafe functions were made safe by each phase (remembering that ResolveLifetimes is executed on
the result of ResolveImports).

Program Original ResolveImports ResolveLifetimes Remaining Total made safe (%)

qsort 1 0 1 0 100%

grabc 1 0 0 1 0%

libcsv 12 0 11 1 92%

RFK 2 1 0 1 50%

urlparser 2 0 2 0 100%

genann 3 2 0 1 67%

xzoom 0 0 0 0 –

lil 6 2 1 3 50%

snudown 6 1 1 4 33%

json-c 20 9 8 3 85%

bzip2 8 4 4 0 100%

libzahl 2 0 2 0 100%

TI 45 44 0 1 98%

optipng 62 29 27 6 90%

tinycc 35 28 3 4 89%

tmux 31 7 9 15 52%

libxml2 210 174 30 6 97%

Total 236 127 69 40 83%

4.1 Evaluation Setup
We evaluate our technique in two parts, which we label in our tables as described below:

• ResolveImports: This is the first step of our technique, described in Section 3.2, which

resolves externally declared types and functions and removes unnecessary unsafe and

mutability markers. Note that this step can make functions marked unsafe into safe functions

even though it does not convert any raw pointers into safe references; this effect comes from

removing unsafe annotations that c2rust adds naively when it did not need to.

• ResolveLifetimes: This is the remainder of our technique, described in Sections 3.3 and 3.4,

which converts Lifetime raw pointers (as described in Section 2.3.1) into safe references.

As we did in Section 3 we will use the term “raw pointers” throughout to mean specifically

Lifetime raw pointers.

We collect the following statistics, similar to Section 2.3.1, to measure the impact of our method:

the number of unsafe functions that use raw pointers; the number of raw pointer declarations; and

the number of raw pointer dereferences.

4.2 Results
Table 7 shows the change in the number of unsafe functions in the scope of our method, i.e., those

that are unsafe due solely to the use of Lifetime raw pointers as described in Section 2.3.1. Our

method makes 76% of these functions safe over all of the corpus programs.

We see that ResolveImports reduces the number of unsafe functions using raw pointers by

54% even though it does not remove any raw pointers. Some of these functions did not have any

underlying cause of unsafety because they use raw pointers as values (e.g., assigning them to certain

fields of a struct in an initializer), which is not unsafe behavior. These cases were categorized as

false positives by our definition, but making them safe requires resolving imports. ResolveLifetimes
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Table 8. Number of raw pointer declarations and dereferences. Orig. = The number from the original program.
Fixed = The number of raw pointer declarations or dereferences removed by our method.

Program Raw Ptr. Declarations Raw Ptr. Dereferences

Orig. Remaining Fixed Fixed (%) Orig. Remaining Fixed Fixed (%)

qsort 2 0 2 100% 4 0 4 100%

grabc 7 2 5 71% 15 6 9 60%

libcsv 18 0 18 100% 148 0 148 100%

RFK 0 0 0 – 0 0 0 –

urlparser 5 0 5 100% 58 0 58 100%

genann 5 5 0 0% 0 0 0 –

xzoom 0 0 0 – 23 23 0 0%

lil 50 27 23 46% 636 22 614 97%

snudown 31 8 23 74% 129 36 93 72%

json-c 41 11 30 73% 93 24 69 74%

bzip2 37 0 37 100% 679 0 679 100%

libzahl 7 0 7 100% 31 0 31 100%

tinycc 191 4 187 98% 946 79 867 92%

optipng 207 9 198 96% 606 10 596 98%

tmux 622 210 412 66% 2486 633 1853 75%

TI 82 82 0 0% 0 0 0 –

libxml2 839 156 683 81% 5175 565 4610 89%

Total 2144 514 1630 76% 11029 1398 9631 87%

makes 63% of the remaining functions safe. The functions that are not made safe by either method

were involved in the following behavior (directly or indirectly):

• Calling free on raw pointers that our method could not rewrite.

• Dereferencing raw pointers that our method could not rewrite.

The impact of ResolveLifetimes on making functions completely safe is limited because to mark

a function as safe we must convert all dereferences of raw pointers contained in the function into

dereferences of safe references. However, making half of the relevant functions safe is a good step

in the right direction.

Table 8 shows the change in the declarations and dereferences of raw pointers. Overall, our

method removes 76% and 89% of Lifetime raw pointer declarations and dereferences, respectively,

over all the corpus programs. These declarations and dereferences make up 8.1% and 9.7% of the total
number of raw pointer declarations and dereferences including all categories of unsafety, because

of the multi-faceted nature of how raw pointers are used. Three of our programs (RFK, genann, and

TI) do not dereference any Lifetime raw pointers, so they do not get much improvement from our

method. We investigated the declarations and dereferences that our method fails to remove. They

fall under the following categories:

• The pointer is not used safely according to the borrow checker rules. This is the case for

the pointers in libxml2, optipng, and bzip2 that we fail to remove, and one declaration in

json-c and tmux. An example of this in bzip2 is where a pointer is borrowed mutably as

a field of a struct, then used mutably while this borrow is alive. We reproduce a simplified

version of the code snippet with this unsafe behavior in [Emre et al. 2021a].

• The pointer is used in the signature of a function that is used as a function pointer. This is

the case for the pointers in json-c (on all but one declaration we failed to remove), lil, and
TI that we fail to remove.
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The other reason for failing to convert some raw pointers is a limitation of our method in that we

do not rewrite function pointer types, so we cannot change the signature of the functions passed as

function pointers. We also inspected the intermediate steps of our tool to look into the root causes

related to the pointers that remain raw due to borrow checker violations. In the bzip2 and optipng
programs, violating the borrow checker for one pointer (in bzip2) and two pointers (in optipng)
are the reason for all of the raw pointers that remain after our technique; in both programs, the

pointer value with illegal borrowing flows into a struct field, so any use of that struct field also

becomes a raw pointer.

4.2.1 Limitations of ResolveImports. The core assumption of our heuristics for ResolveImports

is that the structs with the same name and the same fields represent the same data type, so their

definitions can be merged to allow importing functions from other modules in the same program.

This assumption is violated in tinycc for four anonymous structs, because the c2rust-generated
names of those structs did not match across modules because of how c2rust generates names

for anonymous structs. Because of this problem we get an error from the Rust compiler after the

ResolveImports phase, and fixing the issue involved importing the four structs from where they are

defined, removing the duplicate definition, and changing the four lines of code that use them. The

fix was a 38-line patch, and it took one of the authors 10 minutes to investigate and fix the issue. If

the anonymous structs are renamed appropriately before ResolveImports then this limitation no

longer exists. Doing such a renaming reliably requires reasoning about the source of the anonymous

structs (so being done at the time of translation from C to Rust).

4.3 Performance
Running our method is a one-time effort when translating the C program to a Rust program. In all

of our corpus programs except libxml2 and optipng our method finishes under a minute. In all

programs, ResolveLifetimes takes the majority of the time (harmonic mean: 71%). In all programs

except libxml2 ResolveLifetimes takes at most 3 iterations to resolve all borrow checker conflicts,

and our method terminates under 2 minutes. On libxml2 our method takes 125 minutes to finish,

and ResolveLifetimes takes 81 iterations. Although our method takes a long time to run on a

code base with 400k LoC, it needs to be run only once in the software evolution lifecycle, when

translating the code base from C to Rust. 63% of this time is due to the taint analyses we perform

to propagate the information on which locations need to be owned references or raw pointers as

described in Section 3.4; 78 of the 81 iterations are due to discovering lifetime constraints. libxml2
contains lifetime constraints to discover because it defines structs with as many as 31 pointers.

5 RELATEDWORK
This section covers relevant background regarding C to Rust translation and other related work.

Rust’s ownership system and memory management method are reviewed for unfamiliar readers in

Section 1 of our supplementary material [Emre et al. 2021a].

5.1 Translating C to Rust
There have been several early tools for translating C code to unsafe Rust code, such as Citrus [Citrus

Developers [n.d.]] and Corrode [Sharp 2020]. Both of these tools are now superseded by c2rust [Im-

munant inc. 2020b], an industry-backed C99 to Rust translator. It is made of three parts: (1) the

translator translates the C program to an unsafe Rust program that mirrors the C code; (2) the

refactoring tool helps the programmer refactor and rewrite the unsafe Rust program into a mostly-

safe Rust program by providing program-wide refactoring operations and scripting support; and

(3) the cross-check tool allows for comparing the execution traces of two programs on a test input.
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Since c2rust does not have any formal guarantees, it relies on the cross-check tool to validate that

the initial Rust program behaves the same as the original C program and that the incrementally

refactored Rust programs preserve that behavior. Our technique’s implementation leverages the

translator tool to provide an initial unsafe Rust program and the cross-check tool to validate that

the output of our technique behaves the same as the original C program.

5.2 Characterizing Unsafe Code in Rust
Astrauskas et al. [2020] investigate usage of unsafe in practice across the open-source Rust

ecosystem. They use manual inspection and automated queries to analyze program structure, types,

and other information produced by the compiler. They find that most unsafe code is simple and

well-encapsulated, however interoperability with other languages causes unsafe features to be

used extensively. They report that 44.6% of the unsafe function definitions they found in the Rust

ecosystem are bindings for foreign functions used for linking against C libraries. Their results

support that porting these C libraries to safer Rust versions would significantly reduce the overall

amount of unsafe dependencies in the Rust ecosystem.

Qin et al. [2020] empirically investigate the usage of Rust’s safety mechanisms and unsafe in
open source Rust projects. They also build two static bug detectors based on their study results,

and revealed previously unknown bugs. Their results show that 66% of unsafe operations are due

to unsafe memory operations such as type casting and raw pointer manipulation. They also report

that the most common (42%) purpose of unsafe usage is to reuse existing code, including C code

that performs pointer manipulation and calling into external libraries like glibc. These results
indicate that converting C code to safe Rust is an important problem to increase trust in Rust code,

and that converting raw pointer operations to safe Rust references accounts for a significant portion

of this conversion.

Evans et al. [2020] keep track of potentially unsafe functions by examining the call graph because

the use of unsafe may be gated behind an internal unsafe block in another function. Because

they do not propagate the ultimate causes of unsafety, they deem 89.2% of the potentially unsafe

functions as unsafe because of calling other unsafe functions. They note that most instances of

unsafety is through library dependencies rather than using the unsafe keyword in the crate itself,

and the most frequently called unsafe functions belong to the Rust standard library (65%), and calls

to external C functions (22.5%). The next most common causes of unsafety in their classification

are raw pointer dereferences and using globals, which is similar to our results in Section 2.2.

5.3 Using Compilers as Oracles
There are several program transformation tools that use compilers as oracles to check the annota-

tions computed by the tool, and to provide counterexamples. Flanagan et al. [2001]; Flanagan and

Leino [2001] describe a system that generates candidate annotations for ESC/Java [Flanagan et al.

2002], and refines the annotations until ESC/Java verifies all of them. CANAPA [Cielecki et al. 2006]

propagates non-null constraints in Java programs by running ESC/Java2 on the input program, and

analyzing the errors produced by it to add non-nullness annotations. Similarly, Cascade [Vakilian

et al. 2015] processes type checker errors for a program to infer type qualifiers. To propagate these

qualifiers, Cascade considers data flow edges (pseudo-assignments) as subtyping constraints and

propagates any qualifier that is on the left-hand side of a pseudo-assignment to the right-hand

side.
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5.4 Formalizing Rust Ownership and Type Systems
There are several Rust formalizations in the literature [Benitez 2016; Jung et al. 2017; Reed 2015;

Weiss et al. [n.d.]]. Here, we cover the formalizations that involve the Rust ownership system or

borrow checker, as our technique interacts with both components.

Patina [Reed 2015] is a formal semantics for a pre-1.0 version of Rust. It focuses on using a

syntactic version of the borrow checking algorithm based on lexically-scoped lifetimes. Since then,

Rust has added support for non-lexical lifetimes and other new features, making safety now less

restrictive than in pre-1.0 Rust.

The RustBelt project [Jung et al. 2017] describes a mechanised formal semantics for a Rust mid-

level intermediate representation (MIR) called 𝜆Rust . 𝜆Rust has been used to derive the verification

conditions for safety of widely-used standard library abstractions using unsafe, and to formally

prove that the API they expose is a safe extension of the language. However, since our technique

requires reasoning only about Rust programs translated from C which do not use all Rust features

(e.g., traits), we do not need a complete Rust specification. Therefore, we decided to base our choice

of field-based taint analysis, and the specific rules for promoting references and adding lifetime

constraints on Oxide [Weiss et al. [n.d.]], a simpler formalization that operates closer to Rust’s

source level and only involves Rust features observed in our input programs. Oxide handles explicit

mutability and lifetime annotations with the aim of capturing the essence of Rust. Oxide is close to
Rust’s high-level IR (HIR), and does not model Rust’s module or trait systems.

There have also been extensions of existing semantic modeling and verification tools to support

Rust. Baranowski et al. [2018] extend the SMACK verifier to work on Rust programs, and KRust

[Wang et al. 2018] is an implementation of Rust’s semantics on the K-framework.

6 CONCLUSION
In this paper we have investigated the problem of automatically translating C programs into safer
Rust programs—that is, Rust programs that improve on the safety guarantees of the original C

programs. First, we conducted an in-depth study into the underlying causes of unsafety in translated

programs and the relative impact of fixing each cause. We find that there is a relatively small set of

well-defined categories for these causes; however, the majority of unsafety in a translated program

is caused by more than one category. This means that fixing any one category will have only a

small impact, and that fixing a majority of unsafety will require addressing multiple categories. We

have ordered the categories by their impact to help determine their relative priorities.

Second, we have described and evaluated a novel technique for automatically removing a par-

ticular category of unsafety: the Lifetime raw pointers. Our technique piggy-backs on the Rust

compiler, and our evaluation shows that it removes 87% of Lifetime raw pointer declarations and

89% of raw pointer dereferences of this category.

This paper presents the first empirical study of unsafety in translated Rust programs (as opposed

to programs originally written in Rust) and also the first technique for automatically removing

causes of unsafety in translated Rust programs. It lays the groundwork for future research into

removing even more unsafety from these programs. That future research will address the other

categories of unsafety outlined in this paper and ultimately extend the project to handle multi-

threaded programs and C++.
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