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Abstract. Pointer information is a prerequisite for most program anal-
yses, and inclusion-based, i.e. Andersen-style, pointer analysis is widely
used to compute such information. However, current inclusion-based
analyses can have prohibitive costs in time and space, especially for
programs with millions of lines of code. We present a suite of offline
optimizations that exploit pointer and location equivalence to shrink the
input to the subsequent pointer analysis without affecting precision, dra-
matically reducing both analysis time and memory consumption. Using
a suite of six open-source C programs ranging in size from 169K to 2.17M
LOC, we demonstrate that our techniques on average improve analysis
time by 1.3–2.7× and reduce memory consumption by 3.2–6.9× over the
best current techniques.

1 Introduction

Most program analyses require pointer information, from traditional compiler
optimizations to software verification, security analysis, and program under-
standing. Many of these analyses are interprocedural and require a highly scal-
able whole-program pointer analysis to compute pointer information. The preci-
sion of the computed information can have a profound impact on the usefulness
of the subsequent program analysis. Inclusion-based, i.e. Andersen-style, pointer
analysis is widely-used because of its relative precision and potential for scala-
bility. Inclusion-based analysis scales to millions of lines of code, but memory
consumption is prohibitively high [6]. Memory consumption can be greatly re-
duced by using BDDs to represent points-to sets, but this significantly increases
analysis time [6]. Our goal is to break this trade-off by reducing both mem-
ory consumption and analysis time for inclusion-based pointer analysis, without
affecting the precision of the results.

Inclusion-based analysis is the most precise flow- and context-insensitive
pointer analysis. It extracts inclusion constraints from the program code to ap-
proximate points-to relations between variables, representing the constraints us-
ing a constraint graph, with nodes to represent each program variable and edges
to represent the constraints between variables. Indirect constraints—those that
involve pointer dereferences—can’t be directly represented in the graph, since
points-to information isn’t available until after the analysis has completed. The
analysis satisfies the constraints by computing the dynamic transitive closure of



the graph; as new points-to information becomes available, new edges are added
to the graph to represent the indirect constraints. The transitive closure of the
final graph yields the points-to solution.

Inclusion-based analysis has a complexity of O(n3) time and O(n2) space,
where n is the number of variables; the key to scaling the analysis is to re-
duce the input size—i.e. make n smaller—while ensuring that precision is not
affected. This goal is accomplished by detecting equivalences among the pro-
gram variables and collapsing together equivalent variables. Existing algorithms
only recognize a single type of equivalence, which we call pointer equivalence:
program variables are pointer equivalent iff their points-to sets are identical.
There are several existing methods for exploiting pointer equivalence. The pri-
mary method is online cycle detection [5–7, 10, 11]. Rountev et al. [12] introduce
another method called Offline Variable Substitution (OVS). An offline analysis
is a static analysis performed prior to the actual pointer analysis; in this case,
OVS identifies and collapses a subset of the pointer equivalent variables before
feeding the constraints to the pointer analysis.

In this paper, we introduce a suite of new offline optimizations for inclusion-
based pointer analysis that go far beyond OVS in finding pointer equivalences.
We also introduce and exploit a second notion of equivalence called location

equivalence: program variables are location equivalent iff they always belong to
the same points-to sets, i.e. any points-to set containing one must also contain
the other. Our new optimizations are the first to exploit location equivalence
to reduce the size of the variables’ points-to sets without affecting precision.
Together, these offline optimizations dramatically reduce both the time and
memory consumption of subsequent inclusion-based pointer analysis. This paper
presents the following major results:

– Using three different inclusion-based pointer analysis algorithms [7, 10, 6],
we demonstrate that our optimizations on average reduce analysis time by
1.3–2.7× and reduce memory consumption by 3.2–6.9×.

– We experiment with two different data structures to represent points-to
sets: (1) sparse bitmaps, as currently used in the GCC compiler, and (2)
a BDD-based representation. While past work has found that the bitmap
representation is 2× faster but uses 5.5× more memory than the BDD rep-
resentation [6], we find that, due to our offline optimizations, the bitmap
representation is on average 1.3× faster and uses 1.7× less memory than the
BDD representation.

This paper makes the following conceptual contributions:

– We present Hash-based Value Numbering (HVN), an offline optimization
which adapts a classic compiler optimization [3] to find and exploit pointer
equivalences.

– We present HRU (HVN with deReference and Union), an extension of HVN
that finds additional pointer equivalences by interpreting both union and
dereference operators in the constraints.



– We present LE (Location Equivalence), an offline optimization that finds
and exploits location equivalences to reduce variables’ points-to set sizes
without affecting precision.

2 Related Work

Andersen introduces inclusion-based pointer analysis in his Ph.D. thesis [1],
where he formulates the problem in terms of type theory. Andersen’s algorithm
solves the inclusion constraints in a fairly naive manner by repeatedly iterating
through a constraint vector.

The first use of pointer equivalence to optimize inclusion-based analysis comes
from Faehndrich et al. [5], who represent constraints using a graph and then
derive points-to information by computing the dynamic transitive closure of
that graph. The key optimization is a method for partial online cycle detection.

Later algorithms expand on Faehndrich et al.’s work by making online cy-
cle detection more complete and efficient [6, 7, 10, 11]. In particular, Heintze and
Tardieu [7] describe a field-based analysis, which is capable of analyzing over
1 million lines of C code in a matter of seconds. Field-based analysis does not
always meet the needs of the client analysis, particularly since field-based analy-
sis is unsound for C; a field-insensitive version of their algorithm is significantly
slower [6].

Rountev et al. [12] introduce Offline Variable Substitution (OVS), a linear-
time static analysis whose aim is to find and collapse pointer-equivalent variables.
Of all the related work, OVS is the most similar to our optimizations and serves
as the baseline for our experiments in this paper.

Both pointer and location equivalence have been used in other types of
pointer analyses, although they have not been explicitly identified as such;
Steensgaard’s analysis [14], Das’ One-Level Flow [4], and the Shapiro-Horwitz
family of analyses [13] all sacrifice precision to gain extra performance by in-
ducing artificial pointer and location equivalences. By contrast, we detect and
exploit actual equivalences between variables without losing precision.

Location equivalence has also been used by Liang and Harrold to optimize
dataflow analyses [8], but only post-pointer analysis. We give the first method
for soundly exploiting location equivalence to optimize the pointer analysis itself.

3 Pointer Equivalence

Let V be the set of all program variables; for v ∈ V : pts(v) ⊆ V is v’s points-to
set, and pe(v) ∈ N is the pointer equivalence label of v, where N is the set of
natural numbers. Variables x and y are pointer equivalent iff pts(x) = pts(y).
Our goal is to assign pointer equivalence labels such that pe(x) = pe(y) implies
that x and y are pointer equivalent. Pointer equivalent variables can safely be
collapsed together in the constraint graph to reduce both the number of nodes
and edges in the graph. The benefits are two-fold: (1) there are fewer points-to



sets to maintain; and (2) there are fewer propagations of points-to information
along the edges of the constraint graph.

The analysis generates inclusion constraints using a linear pass through the
program code; control-flow information is discarded and only variable assign-
ments are considered. Function calls and returns are treated as gotos and are
broken down into sets of parameter assignments. Table 1 illustrates the types of
constraints and defines their meaning.

Table 1. Inclusion Constraint Types.

Program Code Constraint Meaning

a = &b a ⊇ {b} b ∈ pts(a)
a = b a ⊇ b pts(a) ⊇ pts(b)
a = ∗b a ⊇ ∗b ∀v ∈ pts(b) : pts(a) ⊇ pts(v)
∗a = b ∗a ⊇ b ∀v ∈ pts(a) : pts(v) ⊇ pts(b)

Our optimizations use these constraints to create an offline constraint graph,1

with var nodes to represent each variable, ref nodes to represent each derefer-
enced variable, and adr nodes to represent each address-taken variable. A ref

node ∗a stands for the unknown points-to set of variable a, while adr node &a

stands for the address of variable a. Edges represent the inclusion relationships:
a ⊇ {b} yields edge &b → a; a ⊇ b yields b → a; a ⊇ ∗b yields ∗b → a; and
∗a ⊇ b yields b → ∗a.

Before describing the optimizations, we first explain the concepts of direct and
indirect nodes [12]. Direct nodes have all of their points-to relations explicitly
represented in the constraint graph: for direct node x and the set of nodes
S = {y : y → x}, pts(x) =

⋃

y∈S

pts(y). Indirect nodes are those that may have

points-to relations that are not represented in the constraint graph. All ref

nodes are indirect because the unknown variables that they represent may have
their own points-to relations. var nodes are indirect if they (1) have had their
address taken, which means that they can be referenced indirectly via a ref

node; (2) are the formal parameter of an indirect function call; or (3) are assigned
the return value of an indirect function call. All other var nodes are direct.

All indirect nodes are conservatively treated as possible sources of points-
to information, and therefore each is given a distinct pointer equivalence label
at the beginning of the algorithm. adr nodes are definite sources of points-to
information, and they are also given distinct labels. For convenience, we will
use the term ’indirect node’ to refer to both adr nodes and true indirect nodes
because they will be treated equivalently by our optimizations.

Figure 1 shows a set of constraints and the corresponding offline constraint
graph. In Figure 1 all the ref and adr nodes are marked indirect, as well as
var nodes a and d, because they have their address taken. Because a and d can

1 The offline constraint graph is akin to the subset graph described by Rountev et
al. [12].



now be accessed indirectly through pointer dereference, we can no longer assume
that they only acquire points-to information via nodes h and i, respectively.

b ⊇ {a} a ⊇ h h ⊇ ∗b
b ⊇ {d} c ⊇ b i ⊇ ∗e
c ⊇ {a} d ⊇ i k ⊇ ∗j
e ⊇ {a} e ⊇ f

e ⊇ {d} f ⊇ e

g ⊇ f

&a 6 b  

c  

e  &d 7*b 3 h  

*e 2 i  

1 k  

a 5

d 4

f  g  

*j

Fig. 1. Example offline constraint graph. Indirect nodes are grey and have already been
given their pointer equivalence labels. Direct nodes are black and have not been given
pointer equivalence labels.

3.1 Hash-based Value Numbering (HVN)

The goal of HVN is to give each direct node a pointer equivalence label such
that two nodes share the same label only if they are pointer equivalent. HVN
can also identify non-pointers—variables that are guaranteed to never point to
anything. Non-pointers can arise in languages with weak types systems, such
as C: the constraint generator can’t rely on the variables’ type declarations to
determine whether a variable is a pointer or not, so it conservatively assumes that
everything is a pointer. HVN can eliminate many of these superfluous variables;
they are identified by assigning a pointer equivalence label of 0. The algorithm
proceeds as follows:

1. Find and collapse strongly-connected components (SCCs) in the offline con-
straint graph. If any node in the SCC is indirect, the entire SCC is indirect.
In Figure 1, e and f are collapsed into a single (direct) node.

2. Proceeding in topological order, for each direct node x let L be the set of
positive incoming pointer equivalence labels, i.e. L = {pe(y) : y → x ∧
pe(y) 6= 0}. There are three cases:

(a) L is empty. Then x is a non-pointer and pe(x) = 0.
Explanation: in order for x to potentially be a pointer, there must exist
a path to x either from an adr node or some indirect node. If there is
no such path, then x must be a non-pointer.

(b) L is a singleton, with p ∈ L. Then pe(x) = p.
Explanation: if every points-to set coming in to x is identical, then x’s
points-to set, being the union of all the incoming points-to sets, must be
identical to the incoming sets.

(c) L contains multiple labels. The algorithm looks up L in a hashtable to
see if it has encountered the set before. If so, it assigns pe(x) the same
label; otherwise it creates a new label, stores it in the hashtable, and
assigns it to pe(x).



Explanation: x’s points-to set is the union of all the incoming points-to
sets; x must be equivalent to any node whose points-to set results from
unioning the same incoming points-to sets.

Following these steps for Figure 1, the final assignment of pointer equivalence
labels for the direct nodes is shown in Figure 2. Once we have assigned pointer
equivalence labels, we merge nodes with identical labels and eliminate all edges
incident to nodes labeled 0.
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Fig. 2. The assignment of pointer equivalence labels after HVN.

Complexity. The complexity of HVN is linear in the size of the graph. Using
Tarjan’s algorithm for detecting SCCs [15], step 1 is linear. The algorithm then
visits each direct node exactly once and examines its incoming edges. This step
is also linear.

Comparison to OVS. HVN is similar to Rountev et al.’s [12] OVS optimization.
The main difference lies in our insight that labeling the condensed offline con-
straint graph is essentially equivalent to performing value-numbering on a block
of straight-line code, and therefore we can adapt the classic compiler optimiza-
tion of hash-based value numbering for this purpose. The advantage lies in step
2c: in this case OVS would give the direct node a new label without checking
to see if any other direct nodes have a similar set of incoming labels, potentially
missing a pointer equivalence. In the example, OVS would not discover that b

and e are equivalent and would give them different labels.

3.2 Extending HVN

HVN does not find all pointer equivalences that can be detected prior to pointer
analysis because it does not interpret the union and dereference operators. Recall
that the union operator is implicit in the offline constraint graph: for direct
node x with incoming edges from nodes y and z, pts(x) = pts(y) ∪ pts(z). By
interpreting these operators, we can increase the number of pointer equivalences
detected, at the cost of additional time and space.



HR algorithm. By interpreting the dereference operator, we can relate a var

node v to its corresponding ref node ∗v. There are two relations of interest:

1. ∀x, y ∈ V : pe(x) = pe(y) ⇒ pe(∗x) = pe(∗y).
2. ∀x ∈ V : pe(x) = 0 ⇒ pe(∗x) = 0.

The first relation states that if variables x and y are pointer-equivalent,
then so are ∗x and ∗y. If x and y are pointer-equivalent, then by definition
∗x and ∗y will be identical. Whereas HVN would give them unique pointer
equivalence labels, we can now assign them the same label. By doing so, we
may find additional pointer equivalences that had previously been hidden by the
different labels.

The second relation states that if variable x is a non-pointer, then ∗x is also
a non-pointer. It may seem odd to have a constraint that dereferences a non-
pointer, but this can happen when code that initializes pointer values is linked
but never called, for example with library code. Exposing this relationship can
help identify additional non-pointers and pointer equivalences.

Figure 3 provides an example. HVN assigns b and e identical labels; the first
relation above tells us we can assign ∗b and ∗e identical labels, which exposes
the fact that i and h are equivalent to each other, which HVN missed. Also,
variable j is not mentioned in the constraints, and therefore the var node j

isn’t shown in the graph, and it is assigned a pointer equivalence label of 0. The
second relation above tells us that because pe(j) = 0, pe(∗j) should also be 0;
therefore both ∗j and k are non-pointers and can be eliminated.

&a 6 b 8
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Fig. 3. The assignment of pointer equivalence labels after HR and HU.

The simplest method for interpreting the dereference operator is to itera-
tively apply HVN to its own output until it converges to a fixed point. Each
iteration collapses equivalent variables and eliminates non-pointers, fulfilling the
two relations we describe. This method adds an additional factor of O(n) to the
complexity of the algorithm, since in the worst case it eliminates a single variable
in each iteration until there is only one variable left. The complexity of HR is
therefore O(n2), but in practice we observe that this method generally exhibits
linear behavior.

HU algorithm. By interpreting the union operator, we can more precisely track
the relations among points-to sets. Figure 3 gives an example in var node c. Two



different pointer equivalence labels reach c, one from &a and one from b. HVN
therefore gives c a new pointer equivalence label. However, pts(b) ⊇ pts(&a), so
when they are unioned together the result is simply pts(b). By keeping track of
this fact, we can assign c the same pointer equivalence label as b.

Let fn be a fresh number unique to n; the algorithm will use these fresh
values to represent unknown points-to information. The algorithm operates on
the condensed offline constraint graph as follows:

1. Initialize points-to sets for each node. ∀v ∈ V : pts(&v) = {v}; pts(∗v) =
{f∗v}; if v is direct then pts(v) = ∅, else pts(v) = {fv}.

2. In topological order: for each node x, let S = {y : y → x} ∪ {x}. Then
pts(x) =

⋃

y∈S

pts(y).

3. Assign labels s.t. ∀x, y ∈ V : pts(x) = pts(y) ⇔ pe(x) = pe(y).

Since this algorithm is effectively computing the transitive closure of the
constraint graph, it has a complexity of O(n3). While this is the same complexity
as the pointer analysis itself, HU is significantly faster because, unlike the pointer
analysis, we do not add additional edges to the offline constraint graph, making
the offline graph much smaller than the graph used by the pointer analysis.

Putting It Together: HRU. The HRU algorithm combines the HR and HU
algorithms to interpret both the dereference and union operators. HRU modifies
HR to iteratively apply the HU algorithm to its own output until it converges
to a fixed point. Since the HU algorithm is O(n3) and HR adds a factor of
O(n), HRU has a complexity of O(n4). As with HR this worst-case complexity
is not observed in practice; however it is advisable to first apply HVN to the
original constraints, then apply HRU to the resulting set of constraints. HVN
significantly decreases the size of the offline constraint graph, which decreases
both the time and memory consumption of HRU.

4 Location Equivalence

Let V be the set of all program variables; for v ∈ V : pts(v) ⊆ V is v’s points-to
set, and le(v) ∈ N is the location equivalence label of v, where N is the set of
natural numbers. Variables x and y are location equivalent iff ∀z ∈ V : x ∈
pts(z) ⇔ y ∈ pts(z). Our goal is to assign location equivalence labels such that
le(x) = le(y) implies that x and y are location equivalent. Location equivalent
variables can safely be collapsed together in all points-to sets, providing two
benefits: (1) the points-to sets consume less memory; and (2) since the points-to
sets are smaller, points-to information is propagated more efficiently across the
edges of the constraint graph.

Without any pointer information it is impossible to compute all location
equivalences. However, since points-to sets are never split during the pointer
analysis, any variables that are location equivalent at the beginning are guar-
anteed to be location equivalent at the end. We can therefore safely compute a



subset of the equivalences prior to the pointer analysis. We use the same offline
constraint graph as we use to find pointer equivalence, but we will be labeling
adr nodes instead of direct nodes. The algorithm assigns each adr node a label
based on its outgoing edges such that two adr nodes have the same label iff
they have the same set of outgoing edges. In other words, adr nodes &a and &b

are assigned the same label iff, in the constraints, ∀z ∈ V : z ⊇ {a} ⇔ z ⊇ {b}.
In Figure 1, the adr nodes &a and &d would be assigned the same location
equivalence label.

While location and pointer equivalences can be computed independently, it
is more precise to compute location equivalence after we have computed pointer
equivalence. We modify the criterion to require that adr nodes &a and &b are
assigned the same label iff ∀y, z ∈ V, (y ⊇ {a} ∧ z ⊇ {b}) ⇒ pe(y) = pe(z).
In other words, we don’t require that the two adr nodes have the same set of
outgoing edges, but rather that the nodes incident to the adr nodes have the
same set of pointer equivalence labels.

Once the algorithm has assigned location equivalence labels, it merges all
adr nodes that have identical labels. These merged adr nodes are each given
a fresh name. Points-to set elements will come from this new set of fresh names
rather than from the original names of the merged adr nodes, thereby saving
space, since a single fresh name corresponds to multiple adr nodes. However, we
must make a simple change to the subsequent pointer analysis to accommodate
this new naming scheme. When adding new edges from indirect constraints, the
pointer analysis must translate from the fresh names in the points-to sets to
the original names corresponding to the var nodes in the constraint graph. To
facilitate this translation we create a one-to-many mapping between the fresh
names and the original adr nodes that were merged together. In Figure 1, since
adr nodes &a and &d are given the same location equivalence label, they will
be merged together and assigned a fresh name such as &l. Any points-to sets
that formerly would have contained a and d will instead contain l; when adding
additional edges from an indirect constraint that references l, the pointer analysis
will translate l back to a and d to correctly place the edges in the online constraint
graph.

Complexity. LE is linear in the size of the constraint graph. The algorithm
scans through the constraints, and for each constraint a ⊇ {b} it inserts pe(a)
into adr node &b’s set of pointer equivalence labels. This step is linear in the
number of constraints (i.e. graph edges). It then visits each adr node, and it
uses a hash table to map from that node’s set of pointer equivalence labels to a
single location equivalence label. This step is also linear.

5 Evaluation

5.1 Methodology

Using a suite of six open-source C programs, which range in size from 169K to
2.17M LOC, we compare the analysis times and memory consumption of OVS,



HVN, HRU, and HRU+LE (HRU coupled with LE). We then use three differ-
ent state-of-the-art inclusion-based pointer analyses—Pearce et al. [10] (PKH),
Heintze and Tardieu [7] (HT), and Hardekopf and Lin [6] (HL)—to compare
the optimizations’ effects on the pointer analyses’ analysis time and memory
consumption. These pointer analyses are all field-insensitive and implemented
in a common framework, re-using as much code as possible to provide a fair
comparison. The source code is available from the authors upon request.

The offline optimizations and the pointer analyses are written in C++ and
handle all aspects of the C language except for varargs. We use sparse bitmaps
taken from GCC 4.1.1 to represent the constraint graph and points-to sets.
The constraint generator is separate from the constraint solvers; we generate
constraints from the benchmarks using the CIL C front-end [9], ignoring any
assignments involving types too small to hold a pointer. External library calls
are summarized using hand-crafted function stubs.

The benchmarks for our experiments are described in Table 2. We run the
experiments on an Intel Core Duo 1.83 GHz processor with 2 GB of memory,
using the Ubuntu 6.10 Linux distribution. Though the processor is dual-core, the
executables themselves are single-threaded. All executables are compiled with
GCC 4.1.1 and the ’–O3’ optimization flag. We repeat each experiment three
times and report the smallest time; all the experiments have very low variance
in performance. Times include everything from reading the constraint file from
disk to computing the final solution.

Table 2. Benchmarks: For each benchmark we show the number of lines of code (com-
puted as the number of non-blank, non-comment lines in the source files), a description
of the benchmark, and the number of constraints generated by the CIL front-end.

Name Description LOC Constraints

Emacs-21.4a text editor 169K 83,213
Ghostscript-8.15 postscript viewer 242K 169,312

Gimp-2.2.8 image manipulation 554K 411,783
Insight-6.5 graphical debugger 603K 243,404

Wine-0.9.21 windows emulator 1,338K 713,065
Linux-2.4.26 linux kernel 2,172K 574,788

5.2 Cost of Optimizations

Tables 3 and 4 show the analysis time and memory consumption, respectively, of
the offline optimizations on the six benchmarks. OVS and HVN have roughly the
same times, with HVN using 1.17× more memory than OVS. On average, HRU
and HRU+LE are 3.1× slower and 3.4× slower than OVS, respectively. Both
HRU and HRU+LE have the same memory consumption as HVN. As stated
earlier, these algorithms are run on the output of HVN in order to improve
analysis time and conserve memory; their times are the sum of their running time



and the HVN running time, while their memory consumption is the maximum of
their memory usage and the HVN memory usage. In all cases, the HVN memory
usage is greater.

Table 3. Offline analysis times (sec).

Emacs Ghostscript Gimp Insight Wine Linux

OVS 0.29 0.60 1.74 0.96 3.57 2.34
HVN 0.29 0.61 1.66 0.95 3.39 2.36
HRU 0.49 2.29 4.31 4.28 9.46 7.70

HRU+LE 0.53 2.54 4.75 4.64 10.41 8.47

Table 4. Offline analysis memory (MB).

Emacs Ghostscript Gimp Insight Wine Linux

OVS 13.1 28.1 61.1 39.1 110.4 96.2
HVN 14.8 32.5 71.5 44.7 134.8 114.8
HRU 14.8 32.5 71.5 44.7 134.8 114.8

HRU+LE 14.8 32.5 71.5 44.7 134.8 114.8

Figure 4 shows the effect of each optimization on the number of constraints for
each benchmark. On average OVS reduces the number of constraints by 63.4%,
HVN by 69.4%, HRU by 77.4%, and HRU+LE by 79.9%. HRU+LE, our most
aggressive optimization, takes 3.4× longer than OVS, while it only reduces the
number of constraints by an additional 16.5%. However, inclusion-based analysis
is O(n3) time and O(n2) space, so even a relatively small reduction in the input
size can have a significant effect, as we’ll see in the next section.

5.3 Benefit of Optimizations

Tables 5–10 give the analysis times and memory consumption for three pointer
analyses—PKH, HT, and HL—as run on the results of each offline optimization;
OOM indicates the analysis ran out of memory. The data is summarized in
Figure 5, which gives the average performance and memory improvement for
the three pointer analyses for each offline algorithm as compared to OVS. The
offline analysis times are added to the pointer analysis times to make the overall
analysis time comparison.

Analysis Time. For all three pointer analyses, HVN only moderately improves
analysis time over OVS, by 1.03–1.18×. HRU has a greater effect despite its
much higher offline analysis times; it improves analysis time by 1.28–1.88×.
HRU+LE has the greatest effect; it improves analysis time by 1.28–2.68×. An
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Table 5. Online analysis times for the PKH algorithm (sec).

Emacs Ghostscript Gimp Insight Wine Linux

OVS 1.99 19.15 99.22 121.53 1,980.04 1,202.78
HVN 1.60 17.08 87.03 111.81 1,793.17 1,126.90
HRU 0.74 13.31 38.54 57.94 1,072.18 598.01

HRU+LE 0.74 9.50 21.03 33.72 731.49 410.23

Table 6. Online analysis memory for the PKH algorithm (MB).

Emacs Ghostscript Gimp Insight Wine Linux

OVS 23.1 102.7 418.1 251.4 1,779.7 1,016.5
HVN 17.7 83.9 269.5 194.8 1,448.5 840.8
HRU 12.8 68.0 171.6 165.4 1,193.7 590.4

HRU+LE 6.9 23.8 56.1 58.6 295.9 212.4

Table 7. Online analysis times for the HT algorithm (sec).

Emacs Ghostscript Gimp Insight Wine Linux

OVS 1.63 13.58 64.45 46.32 OOM 410.52
HVN 1.84 12.84 59.68 42.70 OOM 393.00
HRU 0.70 9.95 37.27 37.03 1,087.84 464.51

HRU+LE 0.54 8.82 18.71 23.35 656.65 332.36



Table 8. Online analysis memory for the HT algorithm (MB).

Emacs Ghostscript Gimp Insight Wine Linux

OVS 22.5 97.2 359.7 266.9 OOM 1,006.8
HVN 17.7 85.0 279.0 231.5 OOM 901.3
HRU 10.8 70.3 205.3 156.7 1,533.0 700.7

HRU+LE 6.4 34.9 86.0 69.4 820.9 372.2

Table 9. Online analysis times for the HL algorithm (sec).

Emacs Ghostscript Gimp Insight Wine Linux

OVS 1.07 9.15 17.55 20.45 534.81 103.37
HVN 0.68 8.14 13.69 17.23 525.31 91.76
HRU 0.32 7.25 10.04 12.70 457.49 75.21

HRU+LE 0.51 6.67 8.39 13.71 345.56 79.99

Table 10. Online analysis memory for the HL algorithm (MB).

Emacs Ghostscript Gimp Insight Wine Linux

OVS 21.0 93.9 415.4 239.7 1,746.3 987.8
HVN 13.9 73.5 263.9 183.7 1,463.5 807.9
HRU 9.2 63.3 170.7 121.9 1,185.3 566.6

HRU+LE 4.5 22.2 33.4 27.6 333.1 162.6
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Fig. 5. (a) Average performance improvement over OVS; (b) Average memory im-
provement over OVS. For each graph, and for each offline optimization X ∈ {HVN,

HRU, HRU+LE}, we compute
OV Stime/memory

Xtime/memory
.



important factor in the analysis time of these algorithms is the number of times
they propagate points-to information across constraint edges. PKH is the least
efficient of the algorithms in this respect, propagating much more information
than the other two; hence it benefits more from the offline optimizations. HL
propagates the least amount of information and therefore benefits the least.

Memory. For all three pointer analyses HVN only moderately improves memory
consumption over OVS, by 1.2–1.35×. All the algorithms benefit significantly
from HRU, using 1.65–1.90× less memory than for OVS. HRU’s greater reduction
in constraints makes for a smaller constraint graph and fewer points-to sets.
HRU+LE has an even greater effect: HT uses 3.2× less memory, PKH uses 5×
less memory, and HL uses almost 7× less memory. HRU+LE doesn’t further
reduce the constraint graph or the number of points-to sets, but on average it
cuts the average points-to set size in half.

Room for Improvement. Despite aggressive offline optimization in the form of
HRU plus the efforts of online cycle detection, there are still a significant number
of pointer equivalences that we do not detect in the final constraint graph. The
number of actual pointer equivalence classes is much smaller than the number
of detected equivalence classes, by almost 4× on average. In other words, we
could conceivably shrink the online constraint graph by almost 4× if we could
do a better job of finding pointer equivalences. This is an interesting area for
future work. On the other hand, we do detect a significant fraction of the actual
location equivalences—we detect 90% of the actual location equivalences in the
five largest benchmarks, though for the smallest (Emacs) we only detect 41%.
Thus there is not much room to improve on the LE optimization.

Bitmaps vs. BDDs. The data structure used to represent points-to sets for
the pointer analysis can have a great effect on the analysis time and mem-
ory consumption of the analysis. Hardekopf and Lin [6] compare the use of
sparse bitmaps versus BDDs to represent points-to sets and find that on av-
erage the BDD implementation is 2× slower but uses 5.5× less memory than
the bitmap implementation. To make a similar comparison testing the effects
of our optimizations, we implement two versions of each pointer analysis: one
using sparse bitmaps to represent points-to sets, the other using BDDs for the
same purpose. Unlike BDD-based pointer analyses [2, 16] which store the en-
tire points-to solution in a single BDD, we give each variable its own BDD to
store its individual points-to set. For example, if v → {w, x} and y → {x, z},
the BDD-based analyses would have a single BDD that represents the set of
tuples {(v, w), (v, x), (y, x), (y, z)}. Instead, we give v a BDD that represents
the set {w, x} and we give y a BDD that represents the set {w, z}. The two
BDD representations take equivalent memory, but our representation is a simple
modification that requires minimal changes to the existing code.

The results of our comparison are shown in Figure 6. We find that for HVN
and HRU, the bitmap implementations on average are 1.4–1.5× faster than the
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Fig. 6. (a) Average performance improvement over BDDs;(b) Average memory im-
provement over BDDs. Let BDD be the BDD implementation and BIT be the bitmap

implementation; for each graph we compute
BDDtime/memory

BITtime/memory
.

BDD implementations but use 3.5–4.4× more memory. However, for HRU+LE
the bitmap implementations are on average 1.3× faster and use 1.7× less mem-
ory than the BDD implementations, because the LE optimization significantly
shrinks the points-to sets of the variables.

6 Conclusion

In this paper we have shown that it is possible to reduce both the memory con-
sumption and analysis time of inclusion-based pointer analysis without affecting
precision. We have empirically shown that for three well-known inclusion-based
analyses with highly tuned implementations, our offline optimizations improve
average analysis time by 1.3–2.7× and reduce average memory consumption by
3.2–6.9×. For the fastest known inclusion-based analysis [6], the optimizations
improve analysis time by 1.3× and reduce memory consumption by 6.9×. We
have also found the somewhat surprising result that with our optimizations a
sparse bitmap representation of points-to sets is both faster and requires less
memory than a BDD representation.

In addition, we have provided a roadmap for further investigations into the
optimization of inclusion-based analysis. Our optimization that exploits location
equivalence comes close to the limit of what can be accomplished, but our other
optimizations identify only a small fraction of the pointer equivalences. Thus,
the exploration of new methods for finding and exploiting pointer equivalences
should be a fruitful area for future work.
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