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Abstract

Pointer analysis is a prerequisite for many program ana)yaed
the effectiveness of these analyses depends on the predsio
the pointer information they receive. Two major axes of pmin
analysis precision arfow-sensitivityand context-sensitivityand
while there has been significant recent progress regardiglse
context-sensitive pointer analysis, relatively littl@gress has been
made in improving the scalability of flow-sensitive poingealysis.

This paper presents a new interprocedural, flow-sensitiregr
analysis algorithm that combines two ideasemi-sparsanalysis
and a novel use of BDDs—that arise from a careful understandi
of the unique challenges that face flow-sensitive pointedyais.
We evaluate our algorithm on 12 C benchmarks ranging from 11K
to 474K lines of code. Our fastest algorithm is on averagex197
faster and uses 4:6less memory than the state of the art, and it
can analyze programs that are an order of magnitude larger th
the previous state of the art.

Categories and Subject Descriptors D.3.4 [Processork Com-
pilers; F.3.2 Bemantics of Programming LanguapjeBrogram
Analysis

General Terms  Algorithms, Languages

Keywords Pointer analysis, alias analysis

1. Introduction

Almost all program analyses are more effective when givecipe
pointer information, and the scalability of such prograralgses is
often dictated by the precision of this pointer informatjd6]. Two
major dimensions of pointer analysis precision foe/-sensitivity
andcontext-sensitivitywhich improve precision in complementary
ways. A context-sensitive analysis respects the semaoitipso-
cedure calls by analyzing each distinct procedure contebdpen-
dently, whereas a context-insensitive analysis mergetextanto-
gether. A flow-sensitive analysis respects the control-fiba pro-
gram and instead computes a separate solution for eachapnogr
point, whereas a flow-insensitive analysis does not regettol-
flow and computes a single solution that conservatively hédd
the entire program.

Recently, the scalability of both flow-insensitive poinggraly-
sis [4, 22, 23, 25, 40, 41] and context-sensitive pointetyais[10,
30, 33, 36, 39, 48, 52] has been greatly improved. In contitzeste
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has been relatively little progress on improving the perfance
of flow-sensitive pointer analysis. This lack of progresarifortu-
nate, because flow-sensitive pointer analysis has beemstoolae
beneficial to important problems, also knowrcéients such as se-
curity analysis [7, 17], deep error checking [20], hardwsysthe-
sis [51], and the analysis of multi-threaded programs [4Bjong
others [3, 9, 18].

In this paper, we present a new interprocedural, flow-sgasit
pointer analysis algorithm that significantly improves ojpioe state
of the art. The algorithm as presented is context-insemsibut it
could be extended to add context-sensitivity using one oérsg
available techniques. Indeed, there is evidence that fegitvity
and context-sensitivity conspire to improve the behavioclient
analyses [20]. Nevertheless, by concentrating exclusivelflow-
sensitivity, we isolate its effects and directly addressarticular
challenges.

1.1 Challenges and Insights

Flow-sensitive pointer analysis presents unique chadistigat hin-
der scalability. We will discuss these challenges in detatbec-
tion 2.3 after describing flow-sensitive pointer analysisSec-
tion 2.1, but we summarize the challenges now so that we can ex
plain our insights for dealing with them.

Traditional flow-sensitive pointer analysis relies on ttendard
iterative dataflow technique, which must conservativelg avef-
ficiently propagate pointer information to all reachablegram
points in case any of those points uses that information.yMan
program analyses have instead emplogtatic single assignment
(SSA) form to enablesparse analysiswhich allows dataflow in-
formation to flow directly from variable definitions to thetor-
responding uses [43]. These def-use chains allow the asalys
to avoid propagating information where it is not neededatiye
increasing analysis efficiency. Unfortunately, the cargton of
these def-use chains requires pointer analysis to determirere
variables are defined and used, so pointer analysis itselfable
to exploit this technique.

In addition, flow-sensitive pointer analysis has prohilgitinem-
ory requirements and uses expensive set operations. Bsewirk
on pointer analysis has appliegmbolic analysisusing binary de-
cision diagrams (BDDs) [6], to both reduce memory usage &ad d
crease the cost of set operations [4, 48, 52]. Unfortunafieky-
sensitive analysis presents a challenge for symbolic aisalye-
cause of the presence stfong updatesStrong updates enable the
analysis to kill old pointer information when a variable ssined
new information. Indirect strong updates (those involvingm-
ory store instructions such dx = y) are problematic for sym-
bolic analysis because they require that each progranmstatebe
processed independently, something for which BDDs are edt w
suited. Previous attempts at using BDDs for flow-sensitviater
analysis [52] have been forced to sacrifice precision toesehac-
ceptable performance.

Our algorithm overcomes these challenges with two insights



1. There exists a subset of program variables (those thatotan
be referenced indirectly via a pointer, calteg-levelvariables)
that can be converted to SSA form without the benefit of pointe
information. For most programs, the majority of variables a
top-level variables, so our solution employpartial static sin-
gle assignment form that performs a sparse analysis oretegb-|
variables while using the standard iterative dataflow dtigor
for the remaining variables.

. We can both preserve the precision benefits of strong epdat
and obtain most of the performance benefit of symbolic analy-
sis by confining the use of BDDs to the representation of point
information, leaving the rest of the analysis unchangecdfin
fect, we use a partially-symbolic pointer analysis.

1.2 Contributions

This paper introduces a new flow-sensitive pointer analgkis-
rithm that is significantly more efficient—both in terms ofadysis
time and memory usage—than the previous state of the arte Mor
specifically, our contributions are as follows:

¢ We identify three major challenges that limit the perforeanf
flow-sensitive pointer analysis, and we explain how all fmes
approaches to optimizing the analysis—as well as our new
algorithm—target one or more of these challenges.

¢ We introduce a new type of flow-sensitive pointer analysis
calledsemi-sparse analysigvhich significantly improves scal-
ability. We further introduce two new optimizations for flow
sensitive analysisTop-Level Pointer Equivalencand Local
Points-to Graph Equivalencehat are enabled by the use of
semi-sparse analysis.

¢ We present the first use of BDDs for flow-sensitive pointer
analysis that allows the use of indirect strong updates. We
also explore the BDD data structure’s strengths and weakses
compared to more conventional data structures.

¢ \We compare our new semi-sparse analys$ &nd semi-sparse
analysis extended with our two new optimizatioas ) against
a baseline algorithm for flow-sensitive pointer analysmss,
standing forlterative dataflowFlow-Sensitive analysis) based
on the work of Hind and Pioli [28]. Our evaluation uses 12
C programs ranging in size from 11K to 474K lines of code
(LOC), and it considers two different data structures foriggy
pointer information, namely, BDDs and sparse bitmaps. &hes
two data structures are used to create two different vessibn
each algorithmiFs, ss, andssa

When using sparse bitmaps to store pointer informationdtin b
sso and IFs, we find thatssois 183x faster thaniFs and
uses 4% less memory. When using BDDs for both algorithms,
we find thatssois 114x faster thaniFs and uses 14 less
memory. Overall, our fastest analysiss© using BDDs) is
197x faster, uses 4.6 less memory, and can analyze programs
that have 323K lines of code, which is an order of magnitude
larger than the baseline algorithm$ using sparse bitmaps).

The rest of the paper is organized as follows. Section 2 ex-
plains flow-sensitive pointer analysis and identifies threg¢hmajor
challenges that hinder scalability. Section 3 describledae work
and it addresses these challenges. Section 4 describis gtatic
single assignment form, Section 5 introduces our new seanise
analysis and optimizations, and Section 6 explores theulrsefs
of BDDs. Section 7 gives a detailed evaluation of all the ysesd,
and Section 8 concludes.

2. Background

This section briefly describes flow-sensitive pointer asialyand
enumerates the major challenges in making the analysidiprac
cal for large programs. Further details on the basic flovsitier
pointer analysis algorithm are described by Hind et al [27].

2.1 Flow-Sensitive Pointer Analysis

Flow-sensitive pointer analysis respects a program’srobfibw
and computes a separate solution for each program poingrin ¢
trast to a flow-insensitive analysis, which ignores statgmeder-
ing and computes a single solution that is conservativelsectfor
all program points.

Traditional flow-sensitive pointer analysis uses an iteeat
dataflow analysis framework, which employs a lattice of fiata
facts £, a meet operator on the lattice, and a family of monotone
transfer functiond; : £ — L that map lattice elements to other lat-
tice elements. For pointer analysis the lattice elemestpaints-to
graphs, the meet operator is set union, and each transfetidon
computes the effects of a program statement to transformgan i
points-to graph into an output points-to graph. Analysisagied
out on thecontrol-flow graph(CFG), a directed grap® = (N, E)
with a finite set of nodes (qgrogram point$, N, corresponding to
program statements and a set of edgeS N x N corresponding
to the control flow between statements. To ensure decitiabili
the analysis branch conditions are uninterpreted and besnare
treated as non-deterministic.

Each nodek of the CFG maintains two points-to graphsy,
representing the incoming pointer information, aodTy, repre-
senting the outgoing pointer information. Each node is cased
with a transfer function that transfornms, to ouTy, characterized
by the setsGEN, andKiLL y, which represent the pointer informa-
tion generated by the node and killed by the node, respéctiviee
contents of these two sets depend on the particular progiate s
ment associated with node and the contents can vary over the
course of the analysis as new pointer information is accatadl
(though the transfer function is still guaranteed to be nama).
The analysis iteratively computes the following two funat for
all nodesk until convergence:

INy = U OUTx (1)
xe pred(k)
OUTk = GENcU(INK—KILLY) (2)

ThekILL set determines whether the analysis performssang
or weakupdate to the left-hand side of an assignment. When the
left-hand side definitely refers to a single memory locatipra
strong update occurs in which thkeLL set is used to remove all
points-to relationsy — x prior to updatingv with a new set of
points-to relations. If the left-hand side cannot be debeech to
point to a single memory location, then a weak update ocdtrs:
analysis cannot be surehich of the possible memory locations
should actually be updated by the assignment, so to be a@tiser
it must setkiLL to the empty set to preserve all of the existing
points-to relations.

An important aspect of any pointer analysis is Heap model
i.e., how the conceptually infinite-size heap is abstraatéa a
finite set of memory locations. The most common practicectvhi
we follow in this paper, is to treat each static memory allmresite
as a single abstract memory location (which may map ontoipheilt
concrete memory locations during program execution).



2.2 The Importance of Flow-Sensitive Pointer Analysis

Some previous work has created a perception that the excéd pr
sion of flow-sensitive pointer analysis is not beneficial, [28], but
as researchers attack new program analysis problems, veveel
that this perception should be questioned for the followaasons:

¢ Different client program analyses require different anteuwof
precision from the pointer analysis [26]. The list of clianily-
ses that have been shown to benefit from flow-sensitive pointe
analysis includes several software engineering applicatof
growing importance, including security analysis [7, 17defd
error checking [20], hardware synthesis [51], and the aigly
of multi-threaded programs [45], among others [3, 9, 18].

The precision of pointer analysis is typically measuredmmis

of metrics that are averaged over the entire program. Inscase
such as security analysis and parallelization, these csetdn

be misleading—a small amount of imprecision in isolatedsgpar
of the program can significantly impact the effectivenesthef
client analysis, as demonstrated by Guyer et al [20]. Thus, t
different pointer analyses can have very similar averag@go

to set sizes but very different impact on the client analysis

In a vicious cycle, the lack of an efficient flow-sensitiveqter
analysis has inhibited the use of flow-sensitive pointedyana

ses. The development and widespread use of a scalable flow-

sensitive pointer analysis would likely uncover additiorigent
analyses that benefit from the added precision.

Several techniques [8, 17, 20, 21, 49] can improve the preci-
sion of flow-sensitive pointer analysis, but most of theshte
nigues greatly increase the cost of the pointer analysi& ma
ing an already non-scalable analysis even more impractcal
significantly more efficient flow-sensitive pointer anatyalgo-
rithm would improve the practicality of such techniques kma
ing flow-sensitive pointer analysis even more useful.

Thus, we conclude that there are many reasons to seek a more

scalable interprocedural flow-sensitive pointer analysis

2.3 Challenges Facing Flow-Sensitive Pointer Analysis

There are three major performance challenges facing flowsitbee
pointer analysis:

1. Conservative propagation.Without pointer information itis in
general not possible to determine where variables are define
used. Therefore, the analysis must propagate the poirfter in
mation generated at each ndd® all nodes in the CFG reach-
able fromk in case those nodes use the information. Typically,
however, only a small percentage of the reachable nodes actu
ally require the information, so most of the nodes receiee th
information needlessly. The effect is to greatly delay tha-c
vergence of equations (1) and (2).

. Expensive transfer functions.Equations (1) and (2) require a
number of set operations with complexity linear in the siaks
the sets involved. These sets tend to be large, with potigntia
hundreds to thousands of elements. This problem is exaeerba
by the analysis’ conservative propagation which requites t
nodes to needlessly re-evaluate their transfer functionsnw
they receive new pointer information even when that inferma
tion is irrelevant to the node.

. High memory requirements. Each node in the CFG must
maintain two separate points-to graphsfor the incoming in-
formation andouT for the outgoing information. For large pro-
grams that have hundreds of thousands of hodes, these-mints
graphs consume a significant amount of memory. This problem
is also exacerbated by the analysis’ conservative projmegat

which requires then andouT graphs to hold pointer informa-
tion irrelevant to the node in question.

All of the work in improving the scalability of flow-sensitv
pointer analysis can be seen as addressing one or more ef thes
challenges. In the next section we review past efforts attingpe
these challenges before describing our own solution toribiglem.

3. Related Work

The current state of the art for traditional flow-sensitivanper
analysis using iterative dataflow analysis is described oyl tdnd
Pioli [27, 28], and their analysis is the baseline that we fase
evaluating our new techniques. Their analysis employsthrajor
optimizations:

1. Sparse evaluation graph (SEG) [11, 16, 42T hese graphs are
derived from the CFG by eliding nodes that do not manipu-
late pointer information—and hence are irrelevant to mint
analysis—while maintaining the control-flow relations argo
the remaining nodes. There are a number of techniques fer con
structing SEGs, which vary in the complexity of the algarith
and the size of the resulting graph. The use of SEGs addresses
challenges (1) and (3) by significantly reducing the inpuht®
analysis.

2. Priority-based worklist. Nodes awaiting processing are placed
on a worklist prioritized by the topological order of the CFG
such that nodes higher in the CFG are processed before nodes
lower in the CFG. This optimization aims to amass at each
node as much new incoming pointer information as possible
before processing the node, thereby addressing chall&)ge (
by reducing the number of times the node must be processed.

. Filtered forward-binding. When passing pointer information
to the target of a function call, it is unnecessary to passyeve
thing. The only pointer information that the callee can asde
that which is accessible from a global or from one of the func-
tion parameters. Challenges (1) and (3) can thus be addresse
by filtering out the remaining information to add. Less imfiar
tion is propagated unnecessarily, which leads to smalletgo
to graphs.

These optimizations speed up the analysis by an averagenf ov
25x. The largest benchmarks analyzed are up to 30,000 lines of
code (LOC).

To improve scalability, several non-traditional appraesho
flow-sensitive pointer analysis have been proposed. Thpse a
proaches take inspiration from a number of non-pointeateel
program analyses which have addressed similar challersiies a
sparse analysigncluding the use of static single assignment (SSA)
form. Pointer analysis cannot directly make use of SSA beezau
pointer information is required to compute SSA form. Cytein
al [14] do propose a scheme for incrementally computing teoin
information while converting to SSA form; by incorporatitige
minimum amount of pointer information necessary, this sohee-
duces the size of the resulting SSA form. However, this tieghn
does not speed up the computation of the pointer information
self. We now describe two approaches that use SSAs for thaelact
computation of pointer information.

Hasti and Horwitz [24] propose a scheme composed of two
passes: a flow-insensitive pointer analysis that gathdrggyan-
formation and a conversion pass that uses the pointer iaftiom
to transform the program into SSA form. The result of the sdco
pass is iteratively fed back into the first pass until coneang is
reached. Hasti and Horwitz leave open the question of whétiee
resulting pointer information is equivalent to a flow-séinsi anal-
ysis; we believe that the resulting information is less gethan a



full flow-sensitive pointer analysis. No experimental enaion of
this technique has been published.

Chase et al [8] propose a technique that dynamically tramsfo
the program to SSA form during the course of the flow-seresitiv
pointer analysis. There is no experimental evaluation if pino-
posed technique; however, a similar idea is described apériex
mentally evaluated by Tok et al [47]. The technique can amaly
programs that are twice as large as those that use iteratiséalv,
enabling the analysis of 70,000 LOC in approximately hak-a
hour. Unfortunately, the cost of dynamically computing Si8An
limits the scalability of the analysis.

We cannot use a common infrastructure to compare Tok et al's

technique with ours, because their technique targets anagthat
begin in non-SSA form, whereas we use the LLVM infrastruc-
ture [32], which automatically transforms a program intotiah
SSA form as described in Section 4. While the comparison is im
perfect due to infrastructure differences, our fastestyaig(sso
using BDDs) is 1,286 faster and uses 11x5less memory on
sendmai |, the only benchmark common to both studies.

A different approach that primarily targets challengesd@jl
(3) is symbolic analysis using Binary Decision Diagrams (&),
which has been used with great success in model checkiné\[2].
number of papers have shown that symbolic analysis canlgreat
improve the performance of flow-insensitive pointer anialj, 48,
50, 52]. In addition, Zhu [51] uses BDDs to compute a flow- and
context-sensitive pointer analysis for C programs. Thdyaimais
fully symbolic (everything from the CFG to the pointer infioation
is represented using BDDs) but not fully flow-sensitive—amal-
ysis cannot perform indirect strong updates, sokha sets are
more conservative (i.e., smaller) than a fully flow-semsitanal-
ysis. Symbolic analysis is discussed in more detail in $ad.
Zhu does not show results for a flow-sensitive, contextriaiize
analysis, so we cannot directly compare his techniquesauith.

int a, b, *c, *d
int* w= &a; W1_= ALLOC,y
int* x = &b; X]_:ALLOCb
int** y = &c; Y1 = ALLOC¢
int** z = vy; Z1=Y1
c= O STOREO Y,
*y - w STOREW] Y1
*7 =y STOREX; 73
y = &d; Y2 = ALLOCy
z =y, 22=Y2
*y = oW STOREW; Y2
k7 = STOREX1 22

1

Figure 1. Example partial SSA code. On the left is the original C
code, on the right is the transformed code in partial SSA form

There are many known algorithms for converting a program int
SSA form [1, 5, 13, 15]. However, the problem becomes more
difficult when we consider indirect definitions through peirs.

To correctly construct SSA form, we must know which variable
are defined and/or used at each statement, which in turnresqui
pointer analysis. Even after pointer information becomediable,
we must either greatly complicate the SSA form [12] or saifi
much of its utility [31].

To overcome these issues, modern compilers such as GCC [38]
and LLVM [32] use a variant of SSA, which we refer to partial
SSAform. The key idea is to divide variables into two clasSsse
class contains variables that are never referenced bygusjrgo
their definitions and uses can be trivially determined bpéusion,
and these variables can be converted to SSA using any &lgorit
for constructing SSA form. The other class contains those va

There have been several other approaches to optimizing flow- ables thatcan be referenced by pointers, and these variables are

sensitive pointer analysis that improve scalability byrjpng the
input given to the analysis. Rather than improve the sdithaloif
the pointer analysis itself, these techniques reduce #teedfiits
input. Client-driven pointer analysis analyzes the neddspartic-
ular client and applies flow-sensitive pointer analysisydol por-
tions of the program that require that level of precision][Zink

et al use a similar technique specifically for typestate ymiglby
successively applying more precise pointer analyses togram,
pruning away portions of the program as each stage of poecisi
has been successfully verified [17]. Kahlon bootstraps the-fl
sensitive pointer analysis by using a flow-insensitive fianaly-
sis to partition the program into sections that can be aedlyade-
pendently [29]. These approaches can be combined with aur ne
flow-sensitive pointer analysis to achieve even greatdakiity.

4. Partial Static Single Assignment Form

Static single assignment (SSA) form is an intermediateasgnta-
tion that requires each variable in a program to be definedtigxa
once. Variables defined multiple times in the original reprea-
tion are split into separate instances, one for each definitWhen
separate instances of the same variable are live at a jam ipdhe
control-flow graph, they are combined usingpdunction, which
takes the old instances as arguments and assigns the cegulgtv
instance.

One benefit of SSA form is that each use of a variable is domi-
nated by exactly one definition, so it is trivial to match ditiims
with their corresponding uses, enablsgarseanalyses. Thus, SSA
form addresses all three major challenges identified in@e2t3:

It speeds up convergence, reduces the number of times dransf
functions need to be evaluated, and reduces the sizes obitsp
to graphs stored at each node.

not placed in SSA form because of the above-mentioned coaapli
tions.

41 LLVM

Our semi-sparse analysis is implemented in the LLVM infrast
ture, so the rest of this section describes LLVM's interregire-
sentation (IR) and its particular instantiation of par&8A form.
While the details and terminology are specific to LLVM, thead
can be translated to other forms of partial SSA.

LLVM’'s IR recognizes two classes of variables: ({tbp-level
variables are those that cannot be referenced indirecty avi
pointer, i.e., those whose address is never exposed viatess-
of operator or returned via a dynamic memory allocation; (2)
address-takervariables are those that have had their address ex-
posed and therefore can be indirectly referenced via agmifp-
level variables are kept in a (conceptually) infinite setidiazal reg-
isters which are maintained in SSA form. Address-takenatdes
are kept in memory, and they are not in SSA form. Addressrtake
variables are accessed vi@AD and STORE instructions, which
take top-level pointer variables as arguments. These ssida&en
variables are never referenced syntactically in the IRy thetead
are only referenced indirectly using theseAD and STOREin-
structions. LLVM instructions use a 3-address format, soelhis at
most one level of pointer dereference for each instruction.

Figure 1 provides an example of a C code fragment and its
corresponding partial SSA form. Variablesx, y, andz are top-
level variables and have been converted to SSA form; va$abb,
¢, andd are address-taken variables, so they are stored in memory
and accessed solely visbAD and STORE instructions. Because
the address-taken variables are not in SSA form, they cdnleac
defined multiple times, as with variablegndd in the example.



int **a, *b, c;
a = &b a=ALLOCp
b = &C, t = ALLOC
c =0 STOREta
STOREOt

Figure 2. Example partial SSA code. On the left is the original C
code, on the right is the transformed code in partial SSA form

Because address-taken variables cannot be directly named
LLVM maintains the invariant that each address-taken Wgia
has at least one virtual register that refers only to thaate. To
illustrate this point, Figure 2 shows how a temporary vdeab,
is introduced in the LLVM IR to take the place of the variable
which in the original C code is referenced by a pointer.

LLVM also treats global variables specially. Def-use clkain
for global variables can span multiple functions; howewerthe
presence of indirect function calls it is not possible to stauct
precise def-use chains across function boundaries withaiater
information. To address this issue, LLVM adds an extra |efel
indirection to each global variabld: gl ob becomesconst T*
gl ob, whereT is the type of the global declared in the original
program. The const pointers are initialized to point to adrasis-
taken variable that represents the original global vagiabihis
modification means that pointer information for global abies
is propagated along the SEG rather than relying on crosgitim
def-use chains.

Note: The rest of this paper will assume the use of the LLVM IR,
which means that any named variable is a top-level variaidenat
an address-taken variable.

4.2 Advantages of Partial SSA

For flow-sensitive pointer analysis, partial SSA form hagesal
important implications which have not been previously tifesd
or explored:

1. The analysis can use a single global points-to graph td hol
the pointer information for all top-level variables. Sinttee
variables are in SSA form, they will necessarily have theesam
pointer information over the entire program. The preserfce o
this global points-to graph means the analysis can avoidthgto
and propagating the pointer information for top-level ghates
among CFG nodes.

. Def-use information for top-level variables is immedlgt
available, as in a sparse analysis. When pointer informdtio
a top-level variable changes, the affected program stattme
can be directly determined, which can dramatically speed up
the convergence of the analysis and reduce the number sftran
fer functions that must be evaluated.

. Local points-to graphs, i.e., separate and ouT graphs for
each CFG node, are still needed farAD and STORE state-
ments, but these graphs only hold pointer information for
address-taken variables. The exclusion of top-level ket
can significantly reduce the sizes of these local pointsépis.

5. Semi-Sparse Analysis

Semi-sparse analysis takes advantage of partial SSA fogne &tly
increase the efficiency of the flow-sensitive pointer analys
order to do so, we introduce a construct calledDia¢aflow Graph
We first describe the characteristics of the dataflow graphham

it is constructed, and we then describe the semi-sparsgsimal
itself, followed by the new optimizations enabled by pdE§A.

Inst Type Example Def-Use Info
ALLOC X =ALLOC; | DERop
COPY X=y z DEF[op, Usaop
LOAD X= *y DEF[op, USE[op, USEgqgr
STORE | *X =y USEop, DEFadr, USEagr
CALL x =foo(y) DEFRop, USEop, DEFadr, USEadr
RET | return x USEop, USEadr

Table 1. Types of instructions relevant to pointer analysis. Instru
tions such ag = &y are converted intaLLOC instructions, much
like C’s alloca.Def-Use Infadescribes whether the instruction can
define or use top-level variablesgFop andUSEop, respectively)
and whether it can define or use address-taken variabes,{,
and USEygy, respectively). Recall that all named variables are, by
construction, top-level.

5.1 The Dataflow Graph

The dataflow graph (DFG) is a combination of a sparse evaluati
graph (SEG) and def-use chains. This combination is reguiye
the nature of partial SSA form, which provides def-use infation
for the top-level variables but not for the address-takeralstes.

Without access to def-use information, an iterative dataflo
analysis propagates information along the control-flonphraAs
described in Section 3, the SEG is simply an optimized varefo
the control-flow graph that elides nodes that neither deforeuse
pointer information. Since address-taken variables ddvae¢ def-
use information available, program statements that defingse
address-taken variables must be connected via a path inB&e
so that variable definitions will correctly reach their @spond-
ing uses. Since top-level variables have def-use infoonathme-
diately available, program statements that define or usdeta
variables can be connected via these def-use chains.

To construct the DFG there are 6 types of relevant program
statements, shown in Table 1. For each statement, the iatde |
whether it defines and/or uses top-level variablesHyp and
USEop, respectively) and whether the statement defines and/er use
address-taken variableBEF,q; and USEyq,, respectively) STORE
instructions are labeledse,q; because weak updates require the
updated variable’s previous points-to seALL instructions are la-
beledDEF,q4, because they can modify address-taken variables via
the callee functioncALL andRET instructions are labeledSEygy
because they need to pass the address-taken pointer itfmmma
to/from the callee functioncopry instructions can have multiple
variables on the right-hand side, which allows it to accordate
SSAg@functions.

The DFG is constructed in two stages. In the first stage, a stan
dard algorithm for creating an SEG (such as Ramalingamesafin
time algorithm [42]) is used. Only program statements latbel
DEFagr OF USEqgr are considered relevant; all others are elided.
Then a linear pass through the partial SSA representatiosed
to connect program statements that define top-level vasabith
those that use those variables. Figure 3 shows the DFG porrds
ing to the partial SSA code in Figure 1.

S

Theorem 1 (Correctness of the DFG)There exists a path in the
DFG from all variable definitions to their corresponding gse

Proof. We proceed by cases based on the type of variable:

Top-level: Def-use information for top-level variables is exposed
by the partial SSA form; the DFG directly connects top-level
variable definitions to their uses, so the theorem is tiiyialie.

Address-taken: All uses of a variable’s definition must be reach-
able from the statement that created the definition in thggraal



Figure 3. Example DFG corresponding to the code in Figure 1.
Dashed edges are def-use chains; solid edges are for the SEG.

control-flow graph. The SEG preserves control-flow informa-
tion for all statements that either define or use addresmtak
variables. Therefore any use of an address-taken varsadidé-
inition must be reachable from the statement that created th
definition in the SEG.

a

5.2 The Analysis

The pointer analysis itself is similar to that described byddand
Pioli [27, 28]. The analysis uses the following data stroesu

e Each functionF has its own program statement worklist
StmtWorklist. The worklist is initialized to contain all state-
ments in the function that define a variable (i.e., are labele
DEFagr OF DEFRop).

e Each program statemektthat uses or defines address-taken
variables (i.e., is labeledSEyq; Or DEF4qr) has two points-to
graphs,INg and ouT, which hold the incoming and outgoing
pointer information for address-taken variables. Bfv) be
the points-to set of address-taken variabla IN.

* A global points-to grapPGop holds the pointer information
for all top-level variables. LetRop(v) be the points-to set of
top-level variables in PGyop.

¢ A worklist FunctionWorklistholds functions waiting to be pro-
cessed. The worklist is initialized to contain all functsan the
program.

The main body of the analysis is listed in Algorithm 1. Theesut
loop selects a function from the function worklist, and thedr
loop iteratively selects a program statement from that tionts
statement worklist and processes it, continuing until tagesnent
worklist is empty. Then the analysis selects a new functiomf

the function worklist, continuing until the function woigl is also
empty. Each type of program statement is processed as skmown i
Algorithms 5-10. These algorithms use the helper functiistsd

in Algorithms 2—-4. The— operator represents set update and

94, and SES represent a def-use edge or SEG edge in the DFG,

respectively.

Algorithm 1 Main body of the semi-sparse analysis algorithm.
Require: DFG = (N,E)
while FunctionWorklistis not emptydo
F =seLEcT(FunctionWorklis}
while StmtWorklist is not emptydo
k =seLECT(StmtWorklist)
switch typeof(k):
caseALLOC: processAllocE, k)
casecoPY. processCopW, k)
caseLOAD: processLoadg, k)
CaseSTORE processStoré( k)
caseCALL: processCalR,k)
caserRET.  processReK,Kk)

Algorithm 2 propagateTopLevek; k)
if PGop changedhen
StmtWorklist < { n|k 2% ne E}

Algorithm 3 propagateAddrTakeR(k)

for all {neN\k%neE}do

INp <= OUTk
if INp changedhen
StmtWorklist — {n}

Algorithm 4 filter(k)

return the subset ofny reachable from either a call argument
or global variable

5.3 Optimizations

Partial SSA form allows us to introduce two additional optai
tion opportunitiestop-level pointer equivalenandlocal points-to
graph equivalence

5.3.1 Top-level Pointer Equivalence

Top-level Pointer Equivalence reduces the number of tepHeri-
ables in the DFG, which reduces the amount of pointer inftiona
that must be maintained by the global top-level points-tpbr
In addition, it eliminates nodes from the DFG, which reduttes
number of transfer functions that must be processed, spgeqt
convergence. The basic idea is to identify sets of variabigtshave
identical points-to sets and to replace each set by a siegtegre-
sentative.

Pointer equivalenvariables are those that have identical points-
to sets. More formally, let— be the points-to relation anck
be the pointer equivalence relation; ther,y,z € Variables:
Xy iff x — z &y — z. Program variables can be partitioned
into disjoint sets based on the pointer equivalence relasno arbi-
trary member of each set is then selected as the set repatigent
By replacing all variables in a program with their respeztset
representatives and then eliding trivial assignments,(®.g x),



Algorithm 5 processAllock,k) : [x = ALLOC;]

PGop < {x — ALLOC;{}
propagateTopLeveH k)

Algorithm 6 processCop¥,K) : [x

1]
<
N

for all v € right-hand sidelo
PGop — {X = Bop(V)}
propagateTopLeveH k)

Algorithm 7 processLoad k) : [x = *y]

PGop < {X — A(Rop(y))}
OUTK < INk
propagateTopLeveH k)
propagateAddrTakeR(k)

Algorithm 8 processStoré(Kk) : [*x = y]

if Bop(Xx) represents a single memory locatitien

/I strong update

OUTK < (INk\ Piop(X)) U {Bop(X) — Bop(y)}
else// weak update

OUTK < INkU {Bop(X) — Rop(y)}
propagateAddrTakeR(k)

Algorithm 9 processCalR,k) : [x = foo(y)]

if f 00 is a function pointethen
targets:= Fop(f 00)

else
targets:= {f oo}

filt :=filter(k)

for all C € targetsdo

for all call arguments and corresponding paramet@rdo

PGop < {p — Rop(a)}
propagateTopLevell p)
Letn be the SEG start node for functi@h
INp « filt
if INp changedhen
StmtWorklist < {n}
if StmtWorklist changedhen
FunctionWorklist— {C}
OUTK < IN \ filt
propagateAddrTakeR(k)

Algorithm 10 processReKk) : [return x|

callsites:= the set ofcALL statements targetirfg
for all n e callsitesdo
Let F, be the function containing
OUTh <> OUT
propagateAddrTakeRg, n)
if nis of the formr = F(...) then
PGop < {r — Rop(X)}
propagateTopLevef;, n)
if StmtWorklist, changedhen
FunctionWorklist— {Fn}

we can reduce the number of variables and the size of thegrogr
that are given as input to the pointer analysis. This ideabeas
previously explored for flow-insensitive pointer analyi@s, 44].

A different approach that primarily targets challengesd@jl
(3) is symbolic analysis using Binary Decision Diagrams (&),
which has been used with great success in model checkiné\[2].
number of papers have shown that symbolic analysis canlgreat
improve the performance of flow-insensitive pointer anialj4, 48,
50, 52]. In addition, Zhu [51] uses BDDs to compute a flow- and
context-sensitive pointer analysis for C programs. Thdyaimis
fully symbolic (everything from the CFG to the pointer infiaation
is represented using BDDs) but not fully flow-sensitive—amal-
ysis cannot perform indirect strong updates, sokha sets are
more conservative (i.e., smaller) than a fully flow-sersitnaly-
sis. This work is explored in more detail in Section 6. Zhusinet
show results for a flow-sensitive, context-insensitivelygsig, so
we cannot directly compare his techniques with ours. Reé3ta
form provides an opportunity to apply this optimization towft
sensitive pointer analysis as well. To do so, we must be alikeh-
tify pointer-equivalent variables prior to the pointer bsés itself.
Theorem 2 shows how we can identify top-level pointer-eajet
variables under certain circumstances.

Theorem 2 (Top-level pointer equivalence)A cory statement of
the form[x = y] = xy.

Proof. Top-level variables are in SSA form, which means that they
are each defined exactly once. Therefore, the value of epdiyel
variable does not change once it is defined.

Sincex andy are top-level variables, their values never change.
The copry statement assignsthe value ofy, sox xy. |

Theorem 2 says that variables involved ircary statement
with a single variable on the right-hand side are pointeiadent,
so they can be replaced with a single representative varidtie
CcoPY statement (called single-usecoprY) is then redundant and
can be discarded from the DFG. When statements are disgarded
any edges to those statements must be updated to point to the
successors of the discarded statement. If nodediscarded from
DFG = (N, E) then the result is a neDFG = (N',E’) where:

N =N\ {n)
e E'=E\{k—ntu{k—p|{k—nn—p}CE}

In Figure 3y1 121 andy,>1z,. We can replace all occurrences
of z; with y,, replace all occurrences o$ with y,, and eliminate
the nodes forlzy = y41] and [z = y»]. The def-use edge from
[y1 = ALLOC] to [z1 =y1] is removed, and a new def-use edge is
added fromy; = ALLOC(] to [STOREX1 Y1]. Similarly, the def-use
edge fromly, = ALLOCq] to [z = Y>] is removed, and a new def-
use edge is added frofjp = ALLOCgy] to [STOREX1 Y2]. Figure 4
shows the optimized version of Figure 3.

Theorem 3 (Correctness of the TransformationYhe top-level
pointer equivalence transformation preserves SSA formtdps
level variables.

Proof. There are two characteristics of SSA form that the transfor-
mation must preserve:

Every variable is defined exactly oncelet V be a set of
pointer-equivalent variables found by the transformataod letS
be the set of statements that define these variaBlesntains ex-
actly one statement that is not a single-asePy. S must contain
at least one such statement because other@&fsems a cycle in
the def-use graph such that a variable is used before it inetkfi
which would violate SSA formS cannot contain more than one
such statement because only single-tise s are considered when



Figure 4. Figure 3 optimized using top-level pointer equivalence.

finding equivalent variables. After the equivalent varésbhre re-
placed by their set representative, all of the single@seys in S
are deleted, leaving exactly one statement that definegpinesen-
tative variable.

Every definition dominates all of its uses.Every single-use
COPY in Sis dominated by a statement 8+if a statemenk =
y € S thenx,y € V and by definitionS must also contain the
statement defining. There is exactly one statement $that is
not a single-use€oPY;, therefore that statement must dominate all
other statements i8. When the single-useoprys are deleted, all
of the edges pointing to those statements are updated agbaesc
above—therefore the remaining statemenSimust dominate all
statements in the program that used a variab\é.in |

5.3.2 Local Points-to Graph Equivalence

Local Points-to Graph Equivalence allows nodes in the DR th
are guaranteed to have identical points-to graphs to shsiregke
graph rather than maintain separate copies. This sharimgiga
nificantly reduce the memory consumption of the pointerysis)
as well as reduce the number of times pointer informationtineis
propagated among nodes.

To identify nodes with identical points-to graphs, we defime
notion ofnon-preservingnodes. The points-to graphs that are local
to nodes in the DFG (i.eINg and ouTy) only contain pointer
information for address-taken variables. By the nature atial
SSA form, onlysTOREinstructions andALL instructions (which
reflect the changes caused BYORE instructions in the callee
function) can modify the address-taken pointer informagtiove
call these nodeson-preserving Other instructions may use this
information (e.g.LOAD andRET instructions), but they propagate
the pointer information through the DFG unchanged; we baisé
nodespreserving We say that non-preserving nogeeachesode
g (p~ q) if there is a path in the DFG fromto g, using only SEG
edges, that does not contain a non-preserving node. Theréena

set of non-preserving nodes; Theorem 4 says that these aoeles
guaranteed to have identical points-to graphs.

Theorem 4 (Local points-to graph equivalencelet Nyp C N be
the set of non-preserving DFG nod&p € Nnpand gr e N: (p~
r < p~q)= g and r have identical points-to graphs.

Proof. Assumedq,r € N.(VYp € Nqp: p~+ < p~» 1), and that

g andr do not have identical points-to graphs. Then one of the
nodes (assume it ig) must have received pointer information that
the other did not. However, by construction of the partiaASS
form, non-preserving nodes are the only places that canrgiene
new pointer information for address-taken variables (thlg kind

of variable present in the local points-to graphs). Theeefp
Nnp.(p ~» gA —(p ~» r)). But this violates our initial assumption
that bothp andq are reachable from the same set of non-preserving
nodes. Thereforgy andg must have identical points-to graphd

A simple algorithm (see Algorithm 11) can detect nodes that
can share their points-to graphs. For eagtoREand CALL node
in the DFG, the algorithm labels all nodes that are reacheible
a sequence of SEG edges without going through ansthereor
CALL node with a label unique to the originating node. Since nodes
may be reached by more than asieOREOr CALL node, each node
will end up with a set of labels. This process takag®) time,
wheren is the number of nodes in the SEG portion of the DFG.
These labels represent the propagation of the unknown groint
information computed by the originating node. All nodeshagin
identical set of labels are guaranteed to have identical jogints-
to graphs and can therefore share a single graph among them.

Algorithm 11 Detecting nodes with equivalent points-to graphs.
Require: DFG = (N,E)
Require: Vne N :idp is a unique identifier
Require: Worklist=N
while Worklistis not emptydo

n=seLECT(Worklis}

for all {keN\k%neE} do

if typeof(k) € {STORE CALL} then
label, < {idg}

else
label, < label,

if label, changedhen

forall {pe N | n=EG pcE}do
Worklist— {p}

By potentially sacrificing a small amount of precision we can
greatly increase the effectiveness of this optimizat@x.L nodes
turn out to be a large percentage of the total number of nades i
the DFG. By assuming that callees do not modify addressitake
pointer information accessible by their callers, therdhynang Al-
gorithm 11 to treatALL nodes exactly the same as all other non-
STORENOdes, we can significantly increase the amount of sharing
between nodes. This assumption is sound—the optimizatibn o
causes nodes to share points-to graphs, so if a callee da#ifymo
address-taken pointer information, the pointer inforomats prop-
agated to additional nodes that it otherwise wouldn’t ha@aehed.
The effect of this assumption on precision and performasesi
plored in Section 7.

6. Symbolic Analysis

This section briefly discusses the pros and cons of usingBDe-
cision Diagrams (BDDs) for flow-sensitive pointer analy&8®Ds

a number of nodes in the DFG that are all reachable from the sam are data structures for compactly representing sets aatibres [6].



BDDs have several advantages over other data structurehbigor
purpose: (1) the size of a BDD is only loosely correlated wlité
number of elements in the set that the BDD represents, mganin
that large sets can be stored in very little space, and (2ydhe
plexity of set operations involving BDDs depends only ongtzes

of the BDDs involved, not on the number of elements in the. sets
Symbolic analysisakes advantage of these characteristics to per-
form analyses that would be prohibitively expensive—battime
and memory—using more conventional data structures. Tdrere

a number of examples of symbolic pointer analyses in thealite
ture [4, 48, 50, 51, 52]. These analyses are fully symboliae&
evant information is stored as either a set or relation uBib@®s,

and the analysis is completely expressed in terms of opesatin
those BDDs. When applied specifically to flow-sensitive perin
analysis [51], the relevant information is the control-flgnaph
and the points-to relations; these are stored in BDDs anttahe-

fer functions for the CFG nodes are expressed as BDD opasgatio
Thus, the analysis essentially compute the transfer fomstior all
nodes in the CFG simultaneously, making the analysis vdty ef
cient.

The strength of symbolic analysis lies in its ability to ddic
perform operations on entire sets. Its weakness is that ribts
well-suited for operating on individual members of a seteind
pendently from each other. This weakness directly impaots-fl
sensitive pointer analysis. TheLL sets for indirect assignments,
such agx =y, cannot be efficiently computed on-the-fly because
their contents depend not only on the pointer informationgoted
during the analysis itself but also on the individual cheeestics
of the points-to set elements at the node in question, etgther
a particular element represents a single memory locatianuf
tiple memory locations (as would be true for a variable summa
rizing the heap). Therefore a fully symbolic flow-sensitp@nter
analysis must either process each indirect assignmentatelya
at prohibitive cost, or conservatively set aliLL sets for indirect
assignments to the empty set, sacrificing precision.

We propose an alternative to a fully symbolic analysis, Wwhic
is to encode only a subset of the problem using BDDs. For ppint
analysis the most useful subset to encode is the set of goimés
lations, which is responsible for the vast majority of botemory
consumption and set operations in the analysis. By isgatie
pointer information representation into its own sourceecatbd-
ule, we can easily substitute a BDD-based implementatioiewh
leaving the rest of the analysis completely unchangedudtict
the on-the-fly computation ofiLL sets. In our experimental evalu-
ation we study the effects of using BDDs to represent poinfer-
mation for both the baseline analysis (based on Hind and[R&])
and our new semi-sparse analysis.

7. Experimental Evaluation

To evaluate our new techniques, we implement three flowitbens
pointer analysis algorithms: a baseline analysis basediwth &hd
Pioli [28] (IFs); semi-sparse flow-sensitive analysgs) and the
semi-sparse analysis augmented with our two new optinoizsti
top-level pointer equivalence and local points-to grapiiedence
(ss0O. All the algorithms are field-sensitive (i.e., they treatk
field of a struct as a separate variable) and for each algorith
we evaluate two versions, one that implements pointer inédion
using sparse bitmaps and a second that uses BDDs.

The bitmap versions afs, ss andssofilter pointer informa-
tion at call-sites as described by Hind and Pioli (see Se@&iand
Section 5.2). The BDD versions of these algorithms do noffilise
tering. The goal of filtering is to reduce the amount of pairite
formation propagated between callers and callees in oodgyeed
up convergence and reduce the sizes of the points-to gréshs.
mentioned earlier, with the use of BDDs we don't need to worry

about the sizes of the points-to graphs, and in fact for thé&©BD
versions the overhead involved in filtering the pointer infation
overwhelms any potential benefit.

The algorithms are implemented in the LLVM compiler infras-
tructure [32], and the BDDs use the BuDDy BDD library [35].€Th
algorithms are written in C++ and handle all aspects of thar€ |
guage except for varargs. The source code for the various alg
rithms is freely available at the authors’ website.

The benchmarks for our experiments are described in Table 2.
Six of the benchmarks are taken from SPECINT 2000 (the larges
six applications from that suite) and six from various ogentce
applications. Function calls to external code are sumradnising
hand-crafted function stubs. The experiments are run or8a 1.
GHz processor with 2 GB of memory, using the Ubuntu 7.04 Linux
distribution.

7.1 Performance Results

Table 3 gives the analysis time and memory consumption of the
various algorithms. These numbers include the time to hihiéd
data structures, apply the optimizations, and compute tlrtqr
analysis.

For the bitmap versions of these algorithms, memory is the
limiting factor.1IFs only scales to 20.5K LOC before running out of
memory,ssscales to 67.2K LOC, anglsoscales to 252.6K LOC.
For the two benchmarks thats manages to completssis 75x
faster and uses 26 less memory, whilessois 183x faster and
uses 4% less memory. For the four benchmarks thatompletes,
Ssois 2.5x faster and uses 6:8less memory.

For the BDD versions of these algorithms, memory is not an
issue and all three algorithms scale to 323.5K LOC. Howeter,
two largest benchmarkgdb andghost scri pt) do not complete
within our arbitrary time limit of eight hours. For the tenrimi-
marks that they do completssis 44.8x faster thanrFs and uses
1.4x less memory, whilessois 114x faster and uses ldless
memory. Comparing the fastest algorithm in our stuglgqusing
BDDs) with our baseline algorithmHs using bitmaps) using the
two benchmarks thaFs manages to complete, we have sped up
flow-sensitive analysis 197 while using 4.6< less memory.

Figures 5 and 6 describe various analysis statistics toagxpl
the relative performance of these algorithms. Figure 5give
percentage of points-to graphs thes and sso have compared
to IFs (i.e., the number of points-to graphs maintained at each
node summed over all the nodes). Figure 6 gives the peranfag
instructions that are processed$yandssocompared toFs (i.e.,
the total number of nodes popped off of the statement waskiiis
Algorithm 1).

For IFs the pointer-related instructions have been grouped into
basic blocks to reduce the number of points-to graphs thedl ne
to be maintained. This grouping is not possible &&and sso
because they have def-use chains between individual atEmns.
However, averaged over all the benchmargs,still has 24.6%
fewer points-to graphs thams because only nodes in the SEG
portion of the dataflow graph require points-to graphs. Aészall
that the points-to graphs fasandssoonly have to hold pointer
information for address-taken variables, so they are muwdller
than the points-to graphs fars. ssoreduces the number of points-
to graphs by another 66.6% oves using local points-to graph
equivalence.

The use of top-level def-use chains for semi-sparse amalysi
pays off: averaged over all the benchmargks,processes 62.9%
fewer instructions thanrs. sso further reduces the number of
instructions processed by 13.7% ogx



Name Description LOC | Statements| Functions | Call Sites
197.parser, parser| 11.4K 33.6K 99 774
ex-050325 text processor 34.4K 37.0K 325 2,519
300.twolf | place and route simulator 20.5K 45.0K 107 331
255.vortex | object-oriented database 67.2K 69.2K 271 4,420

sendmail-8.11.6 email server| 88.0K 69.3K 273 3,203
254.gap| group theory interpreter 71.4K 132.2K 725 6,002
253.perlbmk PERL language| 85.5K 184.6K 726 8,597
vim-7.1 text processor| 323.5K 316.4K 1,935 15,962
nethack-3.4.3 text-based game 252.6K 356.3K 1,385 23,001
176.gcc C language compilef 226.5K 376.2K 1,159 19,964
gdb-6.7.1 debugger| 474.1K 484.3K 3,801 37,119
ghostscript-8.15 postscript viewer| 429.0K 494.0K 4,815 18,050

Table 2. Benchmarks: lines of codde.QC) is obtained by runningc on the sourceStatementsreports the number of statements in the
LLVM IR. The benchmarks are ordered by number of statements.

bitmap BDD

Name IFS SS SSO IFS SS SSO
time | mem || time | mem time | mem time | mem time | mem time | mem
197.parser| 80.25 888 1.28 53 0.52 15 724 142 0.64| 142 0.48 | 142
ex-050325 — | OOM || 15.74 198 7.33 39 7.95| 142 0.66 | 143 0.46 | 142
300.twolf | 72.28 415 0.82 32 0.34 12 6.41| 143 0.46 | 144 0.32| 143
255.vortex — | OOM || 33.37 | 1,275 11.70 81 14.39| 150 0.97| 151 0.78 | 150
sendmail-8.11.6¢ — | OOM — | OOM 86.38 258 38.51| 150 216 | 154 140 | 152
254.gap| — | OOM — | OOM 191.72| 518 68.66 | 167 250 | 168 234 | 166
253.perlomk — | OOM — | OOM — | OOM ||| 1,477.05| 280 50.22| 182 21.25| 177
vim-7.1 — | OOM — | OOM — | OOM ||| 4,759.37| 535 | 573.28| 300 || 112.16| 263
nethack-3.4.3 — | OOM — | OOM || 4,762.07| 1,648 ||| 3,435.48| 423 13.68 | 225 5.37| 220
176.gcc — | OOM — | OOM — | OOM ||| 2,445.27| 595 | 39.71| 234 9.37 | 226
gdb-6.7.1 — | OOM — | OOM — | OOM ooT — ooT — ooT —
ghostscript-8.15 — | OOM — | OOM — | OOM oQoT — ooT — oQoT —

Table 3. Performance: time (in seconds) and memory consumption @gatmytes) of the various analyses. Results undemitmeap
columns are obtained using pointer information implemeniing sparse bitmaps; those underBI¥D columns are obtained using pointer
information implemented using BDDs. OOM means the benchkmem out of memory; OOT means it ran out of time (exceeded gint ei
hour time limit).
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7.2 Performance Discussion

Semi-sparse analysis delivers on its promise. Based onttire n
ber of instructions processed and the reported efficierayi-s
sparse analysis significantly speeds up convergence. W&ieg u
bitmaps, the global top-level points-to graph significaméduces
memory consumption as well, especially when coupled with th
top-level pointer equivalence and local points-to grapiedence
optimizations. However, there are some results which magy lnié
surprising; we highlight these results and explain thenhis sec-
tion.

First, note the memory requirements for the BDD analyses as
compared to the sparse bitmap analyses. We see for the smalle
benchmarks that the BDDs actually require more memory than
the bitmaps, even though the premise behind BDDs is that they
are more memory efficient. This discrepancy arises becdube o
implementation of the BuDDy library—an initial pool of menyo
is allocated before the analysis begins, then expandedcasseary.

As we look at the larger benchmarks we see that the memory
requirements for the BDD analyses rise much more slowly than
that for the bitmaps, bearing out our initial premise.

Second, the bitmap version socompletes for nethack-3.4.3,
but runs out of memory for two benchmarks with fewer stateimen
(253.perlbmk and vim-7.1). This showcases the difficultypcd-
dicting analysis performance based solely on the input-sthe
actual performance of the analysis also depends on fattatsite
impossible to predict before the analysis is complete, siscthe
points-to set sizes of the variables and how widely the poiint-
formation is dispersed via indirect calls.

Third, the time required for thess and sso BDD analyses
to analyze 253.perlbmk, vim-7.1, gdb-6.7.1, and ghogis&il5
seem disproportionately long considering the analysissifor the
other benchmarks. There is one minor and one major reason for
this anomaly. The minor reason is specific to 253.perlbmie—th
field-sensitive solution has an average points-to set sigetwvice
that of the field-insensitive solution. This result seemsanter-
intuitive, since field-sensitivity should add precisiondahence
reduce points-to set size. However, to account for the iddai
fields of the structs, field-sensitive analysis increasesniimber
of address-taken variables, in some cases (such as 25Bnberl
making the points-to set sizes larger than for a field-insgas
analysis, even though the analysis results are, in fact m@cise.
With the exception of 253.perlbomk, all the other benchmatts
have smaller points-to set sizes for the field-sensitivédyaisa

For the remaining three benchmarks with disproportiogatel
large analysis times (vim-7.1, gdb-6.7.1, and ghosts&ipb), the
major reason for the anomaly is the BDDs themselves. To eonfir
this finding, we measure the average processing time perfoode
each of the benchmarks and find that these three benchmarks ha
a much higher time per node than the others. The main cosbef pr
cessing a node is the manipulation of pointer informatiohictv
points out a weakness of BDDs—their performance is direetly
lated to how well they compact the information that they doe-s
ing, and it is impossible to determirgepriori how well the BDDs
will do so. The performance of the pointer analysis can vaey d
matically depending on this one factor. There are BDD opamni
tions that we have not yet explored, and these may improve per
formance; these include the re-arrangement of the BDD biaria
ordering, the use afon’t carevalues in the BDD, and other formu-
lations of BDDs such as Zero-Suppressed BDDs (ZBDDs). Vari-
ous other BDD-based pointer analyses have benefitted frenoion
more of these optimizations [34, 48]

While for now the BDD versions have superior performance,
there is still much that can be done to improve the bitmap ver-
sions. Memory is the critical factor, and most of the memarg-c
sumption comes from the local points-to graphs. Even afiplya
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Figure 7. Analysis time and memory usage (normalized to our
baseline) for the bitmap version ssowithoutthe assumption on
CALLS versusssowith the assumption—i.eSSGyithout/ SSQuith-

ing the local points-to graph equivalence optimization jgmifi-
cant number of the remaining local points-to graphs contanti-
cal information—further efforts to identify and collap$este local
graphs ahead of time could have a dramatic impact on memary co
sumption. For example, there are several possible schemey-f
namically identifying and sharing identical bitmaps asrowltiple
points-to graphs. In addition, by combining semi-sparsalyeis
with dynamically computed static single assignment form4[g]
we could greatly reduce the sizes of the local points-to lygap
We can decrease the cost of evaluating the transfer fursctisn
ing techniques such as the incremental evaluation of tearfisfc-
tions [19]. We believe that there is still significant roonr fomn-
provement in the bitmap version of ttesoalgorithm, which we
plan to explore in future work.

7.3 ssoPrecision

The version ofssoused in these experiments makes use of the
assumption discussed at the end of Section 5.3.2, i.e.,céiae
functions do not modify address-taken pointer informatiooessi-
ble by their callers. This assumption increases the effentiss of
the optimizations (see Figures 7 and 8 for a comparison)pbut
tentially sacrifices some precision. To test how much piecis
lost we compute the thru-deref metric fesoboth with and with-
out this assumption. The thru-deref metric examines eawkD
and STOREiIn the program and averages the points-to set sizes of
the dereferenced variables, weighted by the number of teaek
variable is dereferenced—the larger the value, the lessger¢he
pointer analysis.

We find that our benchmarks do not suffer a significant prenisi
loss by making this assumption; on average the thru-deréfiane
increased by 0.1%, with a maximum increase of 0.2%.

8. Conclusion

Flow-sensitive pointer analysis is an important enabletphology
for program analysis. We have identified the major challertbat
stand in the way of scalable flow-sensitive pointer ana)ysisl we
have directly addressed these challenges with ourseemi-sparse
analysis thereby significantly improving on the previous state of
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Figure 8. Analysis time and memory usage (normalized to our
baseline) for the BDD version afsowithout the assumption on
CALLS versusssowith the assumption—i.eSSGyithout/ SSQuith-

the art. We have also described how BDDs can be effectivedy us
for a fully flow-sensitive pointer analysis without sactifig pre-
cision. Our techniques are 197aster and use 46 less memory
than traditional flow-sensitive pointer analysis.

In the future we plan on further optimizing the analysis, im-
plementing a number of precision-enhancing features, aitdiig
various client analyses (such as security and error-chgappli-
cations) to showcase the usefulness of our techniques. \éwéde
that flow-sensitive pointer analysis has an important osin the
realm of program analysis and that our work has made it plessib
for clients that use flow-sensitive pointer information tmle to
applications with hundreds of thousands of lines of code.
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