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†University of California, Santa Barbara ?Qualcomm Research Silicon Valley

{mkedlaya,benh}@cs.ucsb.edu mcjs@qti.qualcomm.com

Abstract
We are interested in implementing dynamic language run-
times on top of language-level virtual machines. Type spe-
cialization is a critical optimization for dynamic language
runtimes: generic code that handles any type of data is re-
placed with specialized code for particular types observed
during execution. However, types can change, and the run-
time must recover whenever unexpected types are encoun-
tered. The state-of-the-art recovery mechanism is called de-
optimization. Deoptimization is a well-known technique for
dynamic language runtimes implemented in low-level lan-
guages like C. However, no dynamic language runtime im-
plemented on top of a virtual machine such as the Com-
mon Language Runtime (CLR) or the Java Virtual Machine
(JVM) uses deoptimization, because the implementation
thereof used in low-level languages is not possible.

In this paper we propose a novel technique that enables
deoptimization for dynamic language runtimes implemented
on top of typed, stack-based virtual machines. Our tech-
nique does not require any changes to the underlying vir-
tual machine. We implement our proposed technique in a
JavaScript language implementation, MCJS, running on top
of the Mono runtime (CLR). We evaluate our implementa-
tion against the current state-of-the-art recovery mechanism
for virtual machine-based runtimes, as implemented both in
MCJS and in IronJS. We show that deoptimization provides
significant performance benefits, even for runtimes running
on top of a virtual machine.

Categories and Subject Descriptors D.3.4 [Program-
ming Languages]: Processors–Run-time environments, Op-
timization
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1. Introduction
Language-level virtual machines (VMs) provide a number
of advantages for application development. These advan-
tages extend to implementing language runtimes on top
of existing VMs, which we call layered architectures—for
example, dynamic language runtimes like Rhino, IronJS,
IronRuby, JRuby, IronPython, and Jython, which implement
JavaScript, Ruby, and Python runtimes respectively, either
on top of the Java Virtual Machine (JVM) or the Common
Language Runtime (CLR).

However, VMs can also impose performance penal-
ties that make language implementation unattractive. These
penalties include not only VM overheads, but also oppor-
tunity costs arising from optimizations common to native
runtime implementations1 but difficult or impossible within
a VM. Our goal in this work is to alleviate an important op-
portunity cost for implementing dynamic language runtimes
on top of VMs. Specifically, we introduce a novel technique
for deoptimization on typed, stack-based VMs that enables
efficient type specialization, a critical optimization for dy-
namic language runtimes (explained further in Section 2).

Why Implement Languages on a VM? There are many
advantages to using a layered architecture. Layered archi-
tectures provide nice program abstractions, free optimiza-
tions, and highly-tuned garbage collection, which are all re-
quired for a performant engine. Leveraging an existing VM
allows the language developers to focus on language-specific
optimizations without bothering with machine-specific opti-
mizations that are handled by the existing VM. Layered ar-
chitectures also offer a good platform for experimenting with
new language features and different optimization techniques
for language runtimes. Finally, using a layered architecture
enables interoperability between different languages imple-
mented on the same runtime.

1 By which we mean runtimes implemented in a low-level language such as
C and compiled to native binaries.



Opportunity Costs. The existing VM often imposes re-
strictions on the language developer that can prevent impor-
tant optimizations. For example, a key optimization for dy-
namic languages is type specialization, which uses dynamic
profiling to specialize code based on observed type infor-
mation. Type specialization is unsound and thus requires a
recovery mechanism to deal with unexpected types by trans-
ferring execution from the type-specialized code to the orig-
inal unspecialized code. However, the very nature of typed,
stack-based VMs such as the JVM or CLR means that the
most effective known recovery mechanism, deoptimization,
cannot be implemented using any known techniques that are
used in native runtimes [12, 15, 20, 22].

Key Insights. We have developed a novel technique for ef-
fective deoptimization on typed, stack-based VMs. Our key
insight is that we can leverage the VM’s existing exception
mechanism to perform the deoptimization. Doing so is non-
trivial, because exceptions throw away the current runtime
stack whereas deoptimization should preserve the stack in-
formation from the specialized code in order to re-start ex-
ecution at the equivalent program point in the unspecialized
code. Our technique leverages the code generator’s bytecode
verifier to track and transfer appropriate values on the run-
time stack between the specialized code and the unspecial-
ized code when a deoptimization exception is thrown.

Contributions. Our specific contributions are:

• We describe a novel deoptimization technique to enable
type specialization for dynamic language runtimes run-
ning on top of a typed, stack-based virtual machine. (Sec-
tion 3)

• We describe a specific instantiation of this technique for
MCJS2 [21], a JavaScript engine implemented on top of
the CLR. (Section 4)

• We evaluate our MCJS implementation and compare
against (1) a non-type specializing version of MCJS,
(2) a type specializing version of MCJS using an al-
ternate fast-path + slow-path recovery technique, and
(3) IronJS[3], a JavaScript engine implemented using
the DLR (which performs type specialization using the
fast path + slow path technique). We use both standard
benchmarks (i.e., Sunspider and V8) and long-running
web JavaScript applications, and show that our deop-
timization technique significantly outperforms existing
type specialization techniques for layered architectures.
On an average (geomean) our deoptimization technique
is 1.16× and 1.88× faster than MCJS with fast-path +
slow-path recovery technique and IronJS respectively.
(Section 5)

Before describing our technique, we provide background
on type specialization, the two dominant recovery mecha-

2 http://www.github.com/mcjs/mcjs.git

nisms used by type specialization, and the challenges they
face when implemented on top of a VM (Section 2).

2. Type Specialization
In this section we give background on type specialization,
the two dominant recovery mechanisms (fast path + slow
path and deoptimization) used to implement type special-
ization, and the challenges faced by these techniques when
implemented on top of VMs.

2.1 Type Specialization

Dynamic languages are dynamically typed, i.e., a variable
can refer to values of different types at different points dur-
ing a program’s execution. However, dynamic language run-
times implemented in a typed language must declare a sin-
gle type for each variable in the underlying implementation.
Therefore, runtimes must wrap base values (e.g., integers,
booleans, strings, etc) inside a wrapper type called a DValue,
which stands for “dynamic value”. Wrapping a base value
inside a DValue is called boxing, and extracting a base value
from a DValue is called unboxing.

The semantics of dynamic language operations depend
heavily on the types involved. For example, the simple ex-
pression a + b can mean many different things depending
on the types of a and b at the time the expression is evalu-
ated. The runtime must unbox a and b to determine the types
of the wrapped base values, perform the appropriate opera-
tion, and then box the result back into a DValue. Thus every
expression encountered during execution requires unboxing
values, performing a series of branch conditions based on
type, performing the desired operation, and finally boxing a
value. These operations tend to dominate the execution time
of any dynamic language program.

In response, dynamic language implementors have devel-
oped an optimization called type specialization. During exe-
cution the observed types of each variable’s values are mon-
itored. The runtime then dynamically generates code that is
specialized for the observed types. In the previous example,
if a and b are always observed to hold integer values, then the
runtime can generate specialized code that declares them to
be int types instead of DValues and thus avoid all of the un-
boxing, branching, and boxing. However, this optimization
is unsound—for example, while a and b have been integers
so far, they may hold strings at some point later in the execu-
tion. Runtimes that use type specialization must have some
sort of recovery mechanism that detects unexpected types
and falls back to the standard, generic evaluation algorithm.
There are two dominant approaches for this recovery mech-
anism; we describe each below along with their challenges
with respect to being implemented on VMs.

2.2 Recovery Option 1: Fast Path + Slow Path

For the fast path + slow path recovery mechanism, type-
specialized code is guarded by a conditional that tests the
current types of the specialized variables. If the current types



if (GetType(a) == Int && GetType(b) == Int) {

c = ToDValue(IntAdd(a.ToInt(), b.ToInt()));

}

else { // Slow path

c = GenericAdd(a, b);

}

// c is of the type DValue here.

(a) C-like pseudocode representing the fast path + slow path
approach for the statement c = a + b

if (GetType(a) == Int && GetType(b) == Int) {

c = IntAdd(a.ToInt(), b.ToInt());

}

else {

// Jump to deoptimization routine.

}

// c is of the type int here.

(b) C-like pseudocode representing the deoptimization
approach for the statement c = a + b

Figure 1: Two approaches for generating type specialized code for the statement c = a + b where a and b are observed to be
integers.

match the expected types then the true branch containing the
type-specialized code is taken, otherwise the false branch
containing the generic, unspecialized code is taken. In pseu-
docode, where variable is a DValue:

if (unbox(variable).type == type T) {

T variable’ = unbox(variable)

// fast path: specialized code for type T

// computes the result using variable’

box(result)

}

else {

// slow path: unspecialized code computes

// the result using variable

}

// use result

Notice that variables are still unboxed and boxed for the
fast path; this is because the type of result must be the
same regardless of whether the fast path or slow path is
taken. However, there may be multiple operations contained
in the fast path and so the cost of boxing and unboxing is
amortized; in addition, there is no branching on types in the
fast path.

Figure 1a gives C-like pseudocode showing how the run-
time implements the fast path + slow path operation for a
simple binary add operation. Based on the previously ob-
served types of a and b, say int and int, the runtime gen-
erates code to perform integer addition in the fast path and a
generic add operation in the slow path.

Challenges. This technique is the one used in current lay-
ered architectures for dynamic languages that perform type
specialization, such as IronJS and MCJS. There is no techni-
cal difficulty in implementing it, however the constant box-
ing and unboxing severely limits the benefits of type special-
ization. Deoptimization is known to out-perform fast path
+ slow path in native code implementation of dynamic lan-
guage runtimes; however as we describe below deoptimiza-
tion is difficult for VMs.

2.3 Recovery Option 2: Deoptimization

For the deoptimization recovery mechanism, type-specialized
code is again guarded by a conditional that tests the cur-
rent types of the specialized variables. The key difference is
that the fast path and slow path are not contained inside the
branches of the condition; instead, the slow path is placed in
an entirely separate routine. If the condition fails then con-
trol leaves the current, type-specialized routine and jumps to
the generic, unspecialized routine, where it resumes execu-
tion at the unspecialized program point that is equivalent to
the specialized program point where the type mismatch was
detected. In pseudocode, where variable is a DValue:

if (unbox(variable).type == expected type T) {

T variable’ = unbox(variable)

// fast path: specialized code for type T

// computes the result using variable’

}

else {

// jump to equivalent program point in

// unspecialized code

}

// use result

The benefit of this approach is that the remaining code in
the routine can assume that the fast path succeeds, and hence
we do not need to box the result—we can leave it as whatever
type it was specialized to, because if it wasn’t supposed to be
that type then the code would have jumped completely out
of the specialized routine and into the unspecialized routine.

Figure 1b gives C-like pseudocode describing the deop-
timization approach for the statement c = a + b. Similar
to the fast path + slow path approach, the guard condition
checks whether the observed types of a and b are integers.
If so, the runtime unboxes the integer values of a and b and
performs the integer addition operation. This constitutes the
fast path. A difference here with respect to the fast path +
slow path approach is that resultant value is not boxed back
into a DValue before assigning it to c. Instead, the type of c
is initialized to be an integer. This prevents further unboxing
of c when it is used later in the function. The deoptimiza-
tion code captures the current state of execution of the code



and transfers it to either an interpreter or to non-optimized
compiled code.

Challenges. Deoptimization has been used in native code
implementations of dynamic language runtimes. However,
the techniques used there do not translate to typed, stack-
based VMs such as the CLR or JVM. Native code uses ei-
ther code patching/on-stack replacement or long jumps. In
the former strategy, deoptimization is implemented by dy-
namically replacing the specialized code in the runtime stack
with the generic unspecialized code. However, in managed
VMs runtime modification of generated functions is not al-
lowed. In the latter strategy, deoptimization is implemented
as a long jump to the unspecialized code. However, in man-
aged VMs long jumps are not allowed, for two reasons: first,
it disables all optimizations that can be performed within a
basic block, and second, these jumps can violate the Gosling
principle which dictates that stack-based VMs should guar-
antee the typestate at any given program point. Typestate
refers to the types of a function’s local variables and the
types of the values in the operand stack; stack-based VMs
enforce the Gosling principle to help ensure correctness and
performance. Thus, implementing the deoptimization strat-
egy for type specialization using known techniques is not
possible without modifying the underlying VM.

3. Deoptimization on Layered Architectures
In this section we give a high-level overview of our approach
to solving the deoptimization problem on layered architec-
tures. We discuss two aspects: (1) how to jump from the spe-
cialized code to the correct place in the unspecialized code;
and (2) how to transfer the current state from the specialized
code to the unspecialized code.

Jump to Unspecialized Code. When specialized code de-
tects a type mismatch, it must jump from the current program
point in the specialized code to the equivalent program point
in the unspecialized code. As explained in Section 2, we can-
not use the standard techniques of code patching or long
jump to implement this behavior. Instead, we leverage the
underlying VM’s exception-handling mechanism. The jump
from specialized code is done by throwing a GuardFailure
exception. The body of every optimized method is wrapped
in a try block, and deoptimization for every expression in
that body is handled in a common catch block. Figure 3b
illustrates the structure of the specialized code that is gener-
ated for a specific example.

The catch block must then transfer control to the unspe-
cialized code, specifically the point equivalent to where the
exception was thrown in the specialized version. To achieve
this, we assume that the dynamic language runtime imple-
ments something like a subroutine-threaded interpreter [5].
A subroutine-threaded interpreter implements each opera-
tion of the program (e.g., reading a value of a variable,
or performing binary addition) as a separate, unspecialized
subroutine implemented in the underlying VM bytecode;

each subroutine returns a pointer to the next subroutine that
should be executed, and so interpretation consists of a series
of subroutine calls with each call returning the address of the
next subroutine to call.

Assuming the interpreter is subroutine-threaded, each
language expression has an unspecialized implementation
in the form of a subroutine with a known address. At each
deoptimization guard, a pointer to the appropriate expres-
sion’s subroutine is hardcoded into the thrown exception’s
value. The catch block then calls the appropriate subroutine
to transfer control to the unspecialized code. We illustrate
this process with an example in Section 4.

State Transfer. It is not sufficient to simply transfer con-
trol from the specialized code to the unspecialized code; we
must also transfer the current state of the program, i.e., the
values of the local variables on the runtime stack and the
values on the operand stack used to store intermediate val-
ues during expression evaluation. Transferring the local vari-
ables is straightforward: we insert code immediately before
the GuardFailure exception to read the values of each local
variable and store them in a separate data structure shared by
both specialized and unspecialized code. We describe such a
data structure in Section 4.

The tricky part of state transfer is the operand stack. This
stack is cleared whenever an exception is thrown, and its
values are not stored in local or temporary variables. For
example, suppose while evaluating the expression a + b +

c that there is a deoptimization guard around c that throws an
exception. The value of a + b resides (only) in the operand
stack, and must be transferred to the unspecialized code that
will evaluate c before the operand stack is cleared by the
thrown exception. What makes this process tricky is that the
number and types of values on the operand stack vary across
deoptimization points; therefore we must have access to the
stack size and type information at each deoptimization point
in order to correctly transfer state. Unfortunately, managed
VMs do not provide the ability to reflect on the operand stack
during runtime.

We solve this problem by using compile-time3 valida-
tion of the generated intermediate representation. To achieve
this, the code generator is combined with a bytecode ver-
ifier which verifies the generated code line-by-line during
code generation (as opposed to the normal order, which com-
pletely generates the code and then validates it). The bene-
fit of this approach is that, in order to verify type safety, the
code verifier maintains a shadow stack of value types present
in the operand stack at any program point. The code genera-
tor can take advantage of this information during code gen-
eration, whereas it could not do this if the validator waited
until after generation is complete.

3 Throughout this paper, “compile” refers to generation of the typed byte-
code of the underlying VM from the dynamic language being implemented
on that VM. This should not be confused with the native code generation
that happens at the VM level.



function foo(a)

{

var b = 10;

return a + b + global;

}

Figure 2: Running example in JavaScript.

This approach has two benefits beyond enabling correct
state transfer. First, it enables runtime validation of the VM
intermediate bytecode generated by the dynamic language
runtime, which aids the language implementor in detecting
compiler errors early rather than waiting until the code is
actually run and the underlying VM gives an “Invalid IR”
message. Secondly, there are certain unusual circumstances
where the values on the operand stack cannot be transferred
correctly to the unspecialized code, and hence deoptimiza-
tion is not feasible (this is discussed further in Section 4.3).
The code verifier will detect such circumstances and mark
the code as un-optimizable.

4. Deoptimization for MCJS
This section concretely explains the algorithm for deopti-
mization that we have implemented in MCJS, a JavaScript
engine implemented on top of the Common Language Run-
time (CLR). MCJS performs type feedback based type infer-
ence to generate type specialized code. The type inference
algorithm implemented in MCJS is described in the paper
by Kedlaya et al [18]. The explanation in this section uses
a running example given in Figure 2: a JavaScript function
foo that takes an argument a which the example assumes is
always an integer value.

The function foo is initially interpreted by the MCJS run-
time. When foo becomes warm, it is compiled by the fast
compiler into CIL4 bytecode. This fast compilation also: (1)
uses the code verifier to detect the types of values present on
the operand stack for each potential deoptimization point,
and determines for each point if deoptimization is feasible;5

and (2) instruments the code to collect type profiling infor-
mation. Finally, if foo becomes hot then it is re-compiled
by the optimizing compiler into (1) a type-specialized CIL
bytecode version based on the collected profile information;
and (2) an unspecialized subroutine-threaded version used
by the deoptimizer to recover from unexpected types.

The remaining subsections expand on the optimizing
compiler pass: we explain first the subroutine-threaded code
generator and then the specialized code generator that han-
dles deoptimization.

4.1 Subroutine-Threaded Interpreter

When a hot function is compiled, the optimizing compiler
first generates subroutine-threaded code for that function be-

4 Common Intermediate Language, a typed bytecode IR used by the CLR.
5 This is discussed further in Section 4.3.

Index Subroutine Name Expression Operand Stack
0 WriteIndentifier b = 10 []
1 ReadIdentifier a [a]
2 ReadIdentifier b [a, b]
3 AddExpression a+b [a+b]
4 ReadIdentifier global [a+b, global]
5 AddExpression a+b+global [a+b+global]
6 Return return []

Table 1: Subroutines generated for a subroutine-threaded in-
terpreter corresponding to the example in Figure 2. Subrou-
tine 5 is the unspecialized code where control is transferred
by the deoptimizer if global contains an unexpected type
during the specialized code evaluation.

fore generating type-specialized code. The order is impor-
tant, because the specialized code needs to have pointers to
the appropriate subroutines for each potential deoptimiza-
tion point. Table 1 shows the subroutines that are gener-
ated for the example function in Figure 2. The only possible
place for deoptimization (assuming a is always an integer)
is if the type of global changes during some subsequent
execution of foo. Thus, subroutine 5 is the subroutine that
the runtime will jump to if deoptimization occurs. Since the
subroutine-threaded interpreter executes a sequence of sub-
routines for each operation in the function, it is important
to maintain an explicit stack that mimics the operand stack
across the subroutines. MCJS implements this operand stack
in the callFrame data structure described in Figure 4. The
operand stack generated by subroutine 4 needs to be recon-
structed by the deoptimizer before jumping into subroutine
5. The method to do so is explained below.

4.2 Specialized Code Generator

The generated type-specialized code contains deoptimiza-
tion hooks at each potential deoptimization point. These
hooks are filled in with the addresses of the appropriate sub-
routines generated as per the above description. In the exam-
ple, the deoptimization code in the guard around global is
compiled with a pointer to subroutine 5. Figure 3a shows the
CIL code that is generated for the expression a+b+global.

It remains to explain how a deoptimization point transfers
control to the unspecialized code subroutine while maintain-
ing the current program state. We first explain how control is
transferred from the specialized code into the unspecialized
code, and then we explain how program state is transferred
along with the control.

Control Transfer. The jump to the deoptimization code
is implemented using the exception handling feature of the
CLR. Each specialized method is wrapped in a try-catch
block. Before a GuardFailure exception is thrown at a de-
optimization point, the runtime updates the profiler with the
new type that was observed, in order to improve the pro-
filer’s type information. The operand stack is then captured



...

0055 ldloc a

0056 ldloc b

0057 call Int32 Binary.Add:Run (Int32, Int32)

... ; TYPE CHECK

... ; Load the global variable

0071 dup

0072 call int DValue:get_ValueType()

007b ldc.i4 9 ; 9 = observed type = Int32

0080 beq fast ; jump to fast path

... ; DEOPTIMIZATION CODE

... ; Update the profiler with observed type.

... ; Transfer the operand stack to the

... ; callFrame->stack data-structure.

... ; Explained in Table 2.

00d4 ldc.i4 5 ; 5 is the index of the

; subroutine to jump into.

00db throw GuardFailedException(Int32)

... ; FAST PATH

fast call Int32 DValue:AsInt32() ; Unboxing

00e5 call Int32 Binary.Add:Run(Int32, Int32)

... ; Set the return value in the callFrame

00f4 ret

... ; CATCH BLOCK

... ; Store the current values of the local

... ; variables into the callFrame->symbols array.

... ; BlackList this function.

... ; Load the callFrame object that contains

... ; the updated stack and symbols.

... ; Load the subroutine index obtained from

... ; the exception value.

0147 ldc.i4 subroutineIndex

014c call Void STInterp(Int32, CallFrame)

(a) CIL code generated by the type-specializing code generator
for the expression a + b + global.

void __foo(CallFrame *callFrame)

{

int a, b;

try {

b = 10;

a = callFrame->argument[0].ToInt();

int _temp0 = a + b;

DValue _temp1 = callFrame->getGlobal("global");

/* TYPE CHECK */

if (_temp1.type != Int) { // Int is the profiled type

/* DEOPTIMIZATION CODE */

/* Update the profiler with newly observed type */

UpdateProfiler(global, Int);

/* Capture the current values of _temp* */

callFrame->stack.Enqueue(_temp1); // Enqueue(DValue);

callFrame->stack.Enqueue(_temp0); // Enqueue(int);

/* 5 is the pointer to the subroutine */

throw new GuardFailureException(5);

}

else { // FAST PATH

callFrame->retVal = DValue(_temp0 + _temp1.AsInt32());

return;

}

}

catch (GuardFailureException e) {

/* Update the callFrame->symbols array with the

current values of local variables */

callFrame->symbols[symbolsIndex++] = DValue(a);

callFrame->symbols[symbolsIndex] = DValue(b);

BlackList(this); // BlackList this function code.

STInterp(e.subRoutineIndex, callFrame);

}

}

(b) C-like psuedocode that describes the generated CIL for the
JavaScript code in Figure 2. The values pushed onto the stack are made
explicit using temp variables.

Figure 3: The code generated for the JavaScript example in Figure 2.

at the point the exception is thrown. The function locals, in
contrast, are captured inside the catch block; this is because
the operand stack is specific to a particular deoptimization
point while the locals are common across all deoptimization
points in the function. Capturing the values of the local vari-
ables in a single place avoids code duplication and reduces
code bloat.

Once inside the catch block and with all local vari-
ables captured, the runtime must clean up and then trans-
fer control to the appropriate subroutine. First, the runtime
calls the Blacklist function which deletes the specialized
code that had to be deoptimized and updates the function
metadata with this information; this prevents the function
from entering a cycle of specialization followed by deopti-

mization over and over again. Secondly, the runtime calls
the appropriate subroutine whose pointer was passed in-
side the GuardFailure exception, passing it the updated
callFrame data structure as explained below.

State Transfer. In MCJS, the callFrame data structure
tracks the state of execution for the current function. It also
holds a link to the scoping structure used to resolve the scope
of the variables used in the function. Figure 4 shows the
definition of callFrame. MCJS uses the callFrame ob-
ject to transfer program state from the specialized code to
the unspecialized subroutine-threaded code. The two rele-
vant fields are symbols, which holds the values of the func-
tion’s local variables at the deoptimization point, and stack,
which holds the operand stack at the deoptimization point.



struct CallFrame {

// Arguments passed to the function

DValueArray arguments;

// Return value of the function

DValue retVal;

// Fields and functions to track the scope

// and other bookkeeping.

Scope currentScope;

Scope parentScope;

// Fields below are only used by the

// subroutine-threaded interpreter.

// symbols array is used to store the values of

// local variables at the deoptimization point.

DValueArray symbols;

// stack array is used to capture the state of

// operand stack at the deoptimization point.

DValueArray stack;

}

Figure 4: The callFrame data structure which tracks the
state of execution for the current function.

The symbols field is computed inside the specialized
function’s catch block, as explained above. This is straight-
forward for the MCJS implementation because the run-
time maintains a list of local symbols; the catch block
merely iterates over this list and copies the values into the
callFrame.symbols field.

The stack field must be computed separately for each
deoptimization point. For each point, the type and number
of values that need to be pushed onto the stack are differ-
ent. The code generator used to generate the specialized CIL
code uses the bytecode verifier to track this information. The
verifier is reponsible for inferring and checking type infor-
mation, which means that it already needs to know the re-
quired information. We simply piggyback on the verifier to
determine what code to emit for enqueueing the operand
stack values at each deoptimization point. The verifier main-
tains a data structure called the TypeStack which holds the
types of values inside the operand stack at each program
point. At each deoptimization point, we record the current
TypeStack and emit code to enqueue the operand stack val-
ues onto callFrame.stack. Each value is wrapped inside a
DValue before being enqueued. Because in CIL value types
are not subtypes of the Object type, the runtime cannot use
a generic Enqueue(Object) method to enqueue the values
which is why we need the verifier’s TypeStack information.

Table 2 shows how the state transfer code is generated
for the example in Figure 2. Maintaining a TypeStack dur-
ing code generation helps to determine which variation of
Enqueue has to be called to enqueue the value in the top
of the operand stack to callFrame.stack. In the exam-
ple, while enqueuing global from the operand stack, the

Instruction Operand Stack TypeStack

;before state transfer

global

a + b
DValue
Int32

LdLoc callFrame

callFrame
global

a + b
DValue
Int32

LdFld stack

stack
global

a + b
DValue
Int32

Call stack.Enqueue(DValue) a + b Int32

LdLoc callFrame

callFrame

a + b Int32

LdFld stack

stack

a + b Int32

Call stack.Enqueue(Int32)

Table 2: The different steps taken when popping values from
the operand stack.

top of the TypeStack is referred for the appropriate type.
Since the type of global is DValue, the CIL code to call
Enqueue(DValue) is emitted by the code generator. Sim-
ilarly, a call to Enqueue(Int32) is emitted to capture the
value of a + b from the operand stack.

4.3 Limitations

Our deoptimization technique assumes that all values present
on the operand stack at a deoptimization point are subtypes
of DValue. If so, then all of the values are easily convertable
to value types used in the JavaScript runtime. However, there
are rare cases where this assumption is not true. Some opti-
mizations, such as polymorphic inline caches, store the map
or class of an object in the operand stack of the CLR. If a
deoptimization is triggered at this point, state transfer is not
possible because map cannot be converted to a DValue and
stored in callFrame.stack.

Fortunately, it is easy to detect this ahead of time during
code generation. During the fast compilation phase which
translates warm functions to CIL bytecode and instruments
the code with type profiling hooks, the types of the values
in the operand stack are tracked by the code verifier as
previously described. For every deoptimization point, the
type stack is checked to see whether it contains values that
cannot be converted to DValue. If so, then the function is



Benchmark Type
breakout.js Game
chopper.js Game, Animation
colorfulPointer.js Utility, Animation
conways.js Animation, Algorithm
flyingWindows.js Animation, Utility
loadingSpinner.js Utility
sierpinskiGasket.js Algorithm
analogClock.js Utility
halloweenAnim.js Animation
growingGrass.js Animation
kaboom.js Game
mandelbrot.js Animation, Algorithm
plasma.js Animation
primesAnim,js Algorithm
springPond.js Algorithm, Animation
tetris.js Game
waveGraph.js Algorithm, Utility

Table 3: Table describing JS1k web applications used as
benchmarks.

marked as non-optimizable. The profile hooks are removed
and the function is compiled directly to CIL without any type
feedback-based type specialization. Our evaluation shows
that this circumstance rarely happens.

5. Evaluation
We evaluate our deoptimization technique on MCJS using
the standard JavaScript benchmark suites Sunspider [1] and
V8 [2] 6. Because the Sunspider benchmarks run for a short
duration of time (average of 180ms), each benchmark was
wrapped in a 20× loop. We also evaluate our technique on
real-world long-running web applications from the JS1k [4]
website. Due to the unstable nature of IronJS, we selected
only the benchmarks that IronJS was able to execute without
any problem. The JS1k benchmarks are described in the
Table 3.

Experimental Setup. We perform our experiments on a
machine with two 6-core 1.9 GHz Intel Xeon processors
with 32GB of RAM, running the Ubuntu 12.04.3 Linux
OS and Mono v3.2.3. We used the latest version of IronJS,
v0.2.1.0 from its Github repository [3].

Calculating Speedups. To calculate execution times, each
of the benchmarks is run eleven times and the average exe-
cution time of the last ten executions is recorded.

Configurations. Speedup numbers were collected for the
following five configurations.

• MCJS without type feedback-based type specialization
(the base configuration against which results for other
configurations are normalized).

6 MCJS and IronJS do not implement typed arrays. Therefore, we not
evaluate our implementation on Octane benchmarks.

• MCJS with type specialization using the standard fast
path + slow path recovery mechanism (MCJS FS).

• MCJS with type specialization using the deoptimization
recovery mechanism, i.e., our technique (MCJS D).

• MCJS with optimal type specialization (MCJS OPT) as
described below.

• IronJS in its default configuration.

The optimal type specialization configuration means that
code is type-specialized but there is no deoptimization or
any other recovery mechanism; this is unsound, but provides
a maximal speedup due to type specialization against which
we can compare our technique and the cost of deoptimiza-
tion. IronJS is implemented on top of DLR [10] which mim-
ics the fast path + slow path approach to optimizing type
specializable code, hence we use it to show that MCJS is not
a strawman JavaScript implementation.

5.1 Speedups

Figure 5 shows the speedups achieved by the type special-
izing configurations with respect to the MCJS base config-
uration for the Sunspider benchmark suite. The approaches
without a local slow path (i.e., MCJS D and MCJS OPT)
perform significantly better than the fast path + slow path ap-
proaches implemented in MCJS and IronJS. The MCJS OPT
configuration does not emit any deoptimization code and the
runtime exits when any deoptimization should occur, which
is why the 3d-cube.js benchmark sees a speedup of 0× for
the MCJS OPT configuration.

On an average (geomean) MCJS D, MCJS FS, and IronJS
are 1.5×, 1.31×, and 0.77× faster than the base configu-
ration, respectively. On comparing the execution times of
MCJS D against MCJS FS and IronJS, we see an average
speedup (geomean) of 1.14× and 1.97× respectively. An
important observation is that for a few of the benchmarks
like access-fannkuch.js, access-nbody.js, access-nsieve.js,
bitops-bitwise-and.js, etc, the runtime does not benefit from
type feedback-based type specialization. This is because
these benchmarks are relatively small and execute for a very
short period of time (average of 237.2ms). For these bench-
marks profiling overhead is not amortized over time.

Figure 6 shows the speedups achieved by the type special-
izing configurations with respect to the MCJS base config-
uration for the V8 benchmark suite. We selected the bench-
marks for which IronJS executed without crashing. Follow-
ing a similar trend as the Sunspider benchmarks, MCJS D,
MCJS FS, and IronJS are 2.13×, 1.74×, and 1.21× faster
than the MCJS base configuration. On comparing the execu-
tion times of MCJS D against MCJS FS and IronJS, we see
an average (geomean) speedup of 1.22× and 1.75× respec-
tively. Excluding regexp.js (for which MCJS spends most
of the time executing the inefficient regexp library code)
and splay.js (which is a benchmark designed for stressing
the garbage collection of the engine rather than the runtime
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Figure 5: This figure shows the speedup numbers for various configurations of MCJS and IronJS for the Sunspider benchmark
suite. FS = fast path + slow path, D = deoptimization, OPT = optimal.
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Figure 6: This figure shows the speedup numbers for various configurations of MCJS and IronJS for the V8 benchmark suite.
FS = fast path + slow path, D = deoptimization, OPT = optimal.

performance), MCJS D consistently performs better than all
other configurations.

The JS1k benchmarks represent a diverse set of applica-
tions including games, utilities, algorithms, and animations.
We manually modified the JavaScript code to eliminate or
substitute code that interacted with the browser DOM. We
substituted setTimeOut and setInterval functions with
JavaScript functions that execute the passed-in function in
a loop for a considerable number of times. For the bench-
marks that require user interactions like mouse clicks, the
user events were simulated using a fixed set of event objects
embedded in the code. These applications run for a relatively

long duration with the average execution time for the base
configuration being 10.66 seconds.

Figure 7 shows the speedups achieved by the type spe-
cializing configurations with respect to the MCJS base con-
figuration for the JS1k web application benchmark suite. As
expected, MCJS D, MCJS FS and IronJS are 1.76×, 1.5×,
and 0.94× times faster than the MCJS base configuration.
Similar to the other benchmark suites, on comparing the ex-
ecution times of MCJS D with MCJS FS and IronJS, we see
an average speedup of 1.18× and 1.87× respectively.

Speedup vs. V8: MCJS achieves on an average about 75%
of the V8 engine performance on the Sunspider bench-
marks. The speedup is significantly lower for few of the
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benchmarks in V8 benchmark suite. This is mainly because
the regexp and string library implementations of MCJS
(which are based on CLR’s implementations) are very slow.
Those affects dominate performance for those benchmarks,
rather than anything due to recovery. However, this is not
a fair comparison because V8 implements both the recov-
ery mechanisms as part of its compilers along with many
other optimizations, making it very difficult to tease out and
isolate the effect of each of the recovery mechanisms.

5.2 Effect of Deoptimization

Deoptimization is a rare occurrence and it is observed only
during the execution of the 3d-cube.js, colorfulPointer.js,
and conways.js benchmarks. The speedup numbers for these
benchmarks indicate that the overhead of the actual deopti-
mization process is negligible.

There are two ways of measuring the effect of the deop-
timization code. First, we compare the speedup achieved by
the MCJS D and MCJS OPT configurations. Figures 5, 6,
and 7 indicate that the runtime overhead of the deoptimiza-
tion code is negligible.

Secondly, we compare the size of the extra code that is
generated to achieve deoptimization for each of the bench-
marks. Figure 8 shows the comparison on code size of
MCJS D and MCJS FS with respect to MCJS OPT. Though
the amount of code that is generated in MCJS D is approx.
30% higher compared to the MCJS OPT configuration, the
impact on performance is negligible. This is because most of
the extra code that is generated is to enable deoptimization.
This deoptimization code is rarely ever executed for most of
the benchmarks.

Another important metric used while comparing two im-
plementations is the memory consumption. The amount of
data captured in the stackFrame data-structure is very mini-
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Figure 8: This figure shows the percentage increase in CIL
code generated for MCJS FS and MCJS D in comparison to
MCJS OPT. FS = Fast + Slow Path, D = Fast Path with De-
optimization, and OPT = Fast Path with No Deoptimization.

mal; the operand stack and values associated with local vari-
ables are usually a few bytes in size. Therefore, the stack-
Frame data-structure has little to no impact on memory when
we consider a managed runtime system.

5.3 Boxing/Unboxing

The amount of boxing and unboxing of DValues performed
during the execution of the benchmarks is a major cause of
overhead for the MCJS FS configuration. Figure 9 shows
the percentage increase in boxing and unboxing performed
in MCJS FS configuration when compared to the MCJS D
configuration for each of the benchmark suites. As expected,
MCJS FS performs more boxing and unboxing of values
when compared to MCJS D across all benchmark suites.

An important observation is that the percentage of box-
ing for web applications is significantly higher compared to
other benchmarks. This is because the number of variables
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Figure 9: This figure shows the percentage increase in box-
ing and unboxing in MCJS FS in comparison to MCJS D.
FS = fast path + slow path and D = deoptimization.

that are typed in the MCJS D configuration is significantly
higher compared to the number of local variables which are
typed in the MCJS FS configuration. This means that for
the MCJS FS configuration almost all the values need to be
boxed before assigning them to the variable.

5.4 Non-optimizable Code

In some benchmarks, the deoptimization approach is not
possible because some values present in the operand stack
cannot be converted to DValues, as explained in Section 4.3.
Among all benchmarks from the various benchmark suites
that were executed, the runtime was not able to generate
deoptimization code for only 35 out of 448 functions that
were classified as hot. This shows that the deoptimization
approach is viable for type specialization on top of VMs.

6. Related Work
Both the fast path + slow path and the deoptimization ap-
proaches for type specialization have been used in various
dynamic language runtimes implemented natively (rather
than on top of a VM). The baseline compilers of popu-
lar JavaScript engines V8 [9, 24] and SpiderMonkey [23]
use the fast path + slow path approach for initial compi-
lation of JavaScript functions to native code. Once a func-
tion becomes hot, the optimizing compilers for both of these
engines generate type-specialized code with deoptimization
hooks. If the types used for specialization change during
execution, the runtime performs deoptimization by initiat-
ing long jumps to deoptimization routines in the compiled
machine code. Language runtimes written on top of typed,
stack-based runtimes cannot implement such a deoptimiza-
tion technique because of the typed nature of the IR and the
runtime type safety guarantees enforced by the VM.

TraceMonkey [13], PyPy [6], and LuaJIT [19] are popu-
lar tracing JIT compilers. Deoptimization is a common ap-
proach to use in runtimes with trace-based compilers. These
traces span across function boundaries and are compiled to
native code with deoptimization hooks. Implementing such

a trace-based compiler on top of a VM is very complicated,
especially from the perspective of deoptimization.

Brunthaler et al [7, 8] describe a purely interpretative
optimization technique called Quickening implemented in
CPython runtime. Quickening involves rewriting generic in-
structions to optimized alternatives based on the runtime in-
formation. This is analogous to the fast-path + slow-path ap-
proach of optimization. Quickening with deoptimization can
be an alternative to the existing approach of optimization.

Hackett et al [14] describe an approach of combining type
inference with type feedback to generate type specialized
code. This approach uses recompilation approach instead
of classic deoptimization technique to bail out whenever
the type related assumptions do not hold anymore in the
compiled code. Their approach tracks the type of values
held by a variable or object field, and recompile all the type
specialized code to generic version when the new types are
observed.

Dynamic Language Runtime (DLR) [10] based language
implementations like IronJS [3], IronRuby, and IronPython
compile the program written in the dynamic language into
DLR’s ExpressionTrees. DLR performs the optimizations
and native code generation required for the runtime. DLR
employs polymorphic inline caches to specialize any oper-
ation observed during execution, which is analogous to the
fast path + slow path approach of type specialization. As ob-
served in Section 5, such an optimization does not always
result in good performance when compared to the deopti-
mization approach.

Ishizaki et al [17] implement a dynamically-typed lan-
guage runtime by modifying a statically-typed language
compiler. Their approach to type specialization modifies the
compiler to generate fast path + slow path code for arith-
metic, logical, and comparison operators. Similarly to the
MCJS original fast path + slow path approach, their ap-
proach also has to deal with incessant boxing and unboxing
of values.

Duboscq et al [11] describe a way of inserting and co-
alescing deoptimization points in the IR of the Graal VM.
This technique is orthogonal to and complementary to our
own. In our approach, the deoptimization points are deter-
mined while generating the subroutine threaded code for
the interpreter. Our implementation can benefit from the
techniques like coalescing and movement of deoptimziation
points described in their paper.

On-stack replacement (OSR) is a deoptimization / reopti-
mization strategy that has been explored and implemented in
language runtimes to enable speculative optimizations [12,
15, 20, 22] and to enable debugging of optimized code [16].
Hölzle et al [16] implement deoptimization for the SELF
programing language for debugging optimized code. The
main focus of this work is to maintain the mapping from op-
timized compiled code to source code. As the authors have
complete control over the underlying VM, such deoptimiza-



tion is relatively easy to implement when compared to our
implementation which does not modify the underlying VM.
Fink et al [12] describe an on-stack replacement strategy for
deoptimization implemented in JikesRVM. As described in
the paper, capturing the state of the execution is straightfor-
ward given the access to the JVM scope descriptor object of
the executing code. Our implementation is not straightfor-
ward due to the fact that part of the state that needs to be
transferred resides in the underlying operand stack which is
not easily accessible by any code currently executing in the
VM. Soman et al [22] present a new general-purpose OSR
technique on JikesRVM which is decoupled from the opti-
mization performed by the runtime. Similar to this approach
our deoptimization technique is also general-purpose. Ap-
plying the current deoptimization technique to other opti-
mizations would involve minor modifications to the subrou-
tine threaded interpreter to indicate the expected points of
deoptimization specific to that optimization.

7. Conclusion
Deoptimization is a recovery mechanism which allows the
runtime to bail out of type specialized code when type as-
sumptions are violated, capture the state of current execution
and continue execution form an equivalent point in a unspe-
cialized code. This paper proposes a novel deoptimization
based type-specialized code generation for a dynamic lan-
guage runtime implemented on top of a typed, stack-based
virtual machine. Our approach does not require any modifi-
cation to the underlying virtual machine. Our implementa-
tion uses the exception handling feature offered by the un-
derlying VM to perform deoptimization. Just using excep-
tion handling feature to jump into unspecialized code is not
enough because throwing an exception clears the operand
stack of the VM. The operand stack is an important part of
state that needs to be transferred during deoptimization. We
leverage the shadow type stack maintained by the bytecode
verifier, which verifies the validity of the code generated dur-
ing its generation, to safely transfer the values in the operand
stack to the unspecialized code.

We implement our proposed technique in MCJS, a re-
search JavaScript engine running on top of the Mono run-
time. We evaluate our implementation against the fast path +
slow path approach implemented in MCJS and IronJS. Our
results show that deoptimization approach is on an average
(geomean) 1.16× and 1.88× faster than fast path + slow path
approach implemented in MCJS and IronJS respectively on
Sunspider, V8 and web application benchmark suites.

Our implementation is generic and can be extended to en-
able other optimizations like function inlining. A few minor
modifications to the existing approach are required to imple-
ment it in a sound manner. Currently, the location of deop-
timization is determined by the placement of type checking
guards. This needs to be extended to incorporate possible
places where function inlining is possible in the code.
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