
Position Paper: Sapper: A Language for
Provable Hardware Policy Enforcement

Xun Li Vineeth Kashyap Jason K. Oberg∗ Mohit Tiwari† Vasanth Ram Rajarathinam
Ryan Kastner∗ Timothy Sherwood Ben Hardekopf Frederic T. Chong

Department of Computer Science ∗Department of Computer Science and Engineering
University of California, Santa Barbara University of California, San Diego

Santa Barbara, CA La Jolla, CA
{xun,vineeth,vasanthram,sherwood,benh,chong}@cs.ucsb.edu {jkoberg,kastner}@cs.ucsd.edu

†Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA
{tiwari@eecs.berkeley.edu}

Abstract
We describe Sapper, a language for creating critical hardware
components that have provably secure information flow. Most
systems that enforce information flow policies place the hard-
ware microarchitecture within the trusted computing base, and also
assume that the observable behavior of that microarchitecture is
fully and correctly documented. However, the reality is that this
behavior is incompletely (and sometimes incorrectly) specified,
and that the microarchitecture itself often contains implementation
bugs. This fact means that all such systems are vulnerable to attack
by exploiting undocumented or buggy hardware features. Sapper
addresses this problem by enabling flexible and efficient hardware
design that is provably secure with respect to a given information
flow policy. Sapper uses a hybrid approach that leverages unique
language features and static analysis to determine a set of dynamic
checks that are automatically inserted into the hardware design.
These checks are provably sufficient to guarantee that the resulting
hardware prevents all explicit, implicit, and timing channels even
if the hardware is otherwise buggy or poorly documented.

Categories and Subject Descriptors B.5.2 [Design Aids]: Hard-
ware description languages

General Terms Security, Languages

Keywords Hardware Description Language, non-interference,
information flow

1. Introduction
In this paper we present our ongoing work towards designing
hardware components with strong security properties, specifi-
cally with respect to information flow. Information flow control
mechanisms enforce privacy and integrity security policies by

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLAS’13, June 20, 2013, Seattle, WA, USA.
Copyright c⃝ 2013 ACM 978-1-4503-2144-0/13/06. . . $15.00

tracking and constraining the propagation of data through a system.
This tracking is accomplished by associating labels with the
data, and propagating these labels appropriately. A wide spec-
trum of techniques for enforcing information flow policies have
been proposed, ranging from language support [26], to operating
system support [15, 35], to hardware support [34]. While these
techniques are effective in a variety of scenarios, they make the
critical assumption that the hardware documentation correctly and
fully describes the behavior of the machine with respect to infor-
mation flow. Unfortunately, even the most widely examined and
used processors fail to meet this fundamental assumption.

Modern microprocessors ship with a significant number of bugs,
despite being one of the most tested products brought to market
today. To create these microprocessor designs, hardware engineers
use design tools ranging from synthesis tools that can convert a
subset1 of hardware description languages such as Verilog into low-
level netlists,2 testing tools [9], model checking tools [6], and even
verification tools to prove the correctness of subcomponents with
respect to a reference [14]. However, hardware can have just as
many “moving parts” as a fully featured operating system and full
verification is a practical impossibility [1]. The size and complexity
of these designs mean that real production systems ship with bugs
with software level ramifications. While these bugs may not occur
in commonplace execution, a motivated attacker will find unique
ways to exploit these undocumented behaviors to leak information
and circumvent security policies [11, 13].

1.1 Our Approach
The core of our approach is a security-aware hardware design
synthesis language called Sapper. Sapper uses a hybrid approach
that leverages unique language features and static analysis to deter-
mine a set of dynamic checks that are automatically inserted into
the hardware design. These checks translate runtime security policy
violations into safe operations, and they are provably sufficient to

1 Unlike software compilers, HDL compilers typically handle only a subset
of the language and/or only specific types of constructs that infer certain
types of hardware. In this respect they are quite unlike traditional program-
ming languages.
2 A netlist is a directed graph of circuit elements (e.g. logic gates) and
interconnects (i.e. wires) that can be mapped onto a physical substrate (e.g.
an FPGA or custom hardware implementation).

guarantee that the resulting hardware prevents all explicit, implicit,
and timing channels. Sapper wraps around existing Verilog Hard-
ware Description Language (HDL) code. The Sapper compiler
automatically derives and inserts security checks into the system
at critical latches; these checks operate in parallel with the logic
they analyze. During design testing but before fabrication3, the
inserted checks will detect actions that violate security and translate
those actions into pre-specified (by the hardware designer) non-
violating actions. In other words, policy violations will show up
during the design testing phase as functional bugs. Through careful
design, the hardware engineers ensure that the system will operate
as intended in the vast majority of cases even with these checks
in place (as covered by traditional testing/verification techniques).
Once testing is complete the second function of the inserted checks
comes into play, as they will remain in the fabricated design. The
checks serve as the last line of defense against run-time violations
in conditions never encountered during testing and verification.
Both undiscovered hardware bugs and rarely occurring combina-
tions of events may provide opportunities to attack an unprotected
system; however, hardware designed with Sapper will automati-
cally capture and prevent any runtime violations.

2. Motivation
Sapper enforces a timing-sensitive noninterference security policy,
where the security principles and relations between principles are
defined by the hardware designer. Noninterference means that data
tagged with a lower-level security label cannot influence the values
of data tagged with a higher-level security label.4 Timing-sensitive
noninterference means that we take into account not only explicit
(data-dependency related) information flow and implicit (control-
dependency related) information flow, but also information flow
related to when events happen. Timing-sensitivity is extremely
difficult to enforce at the software level (see, e.g., Kashyap et
al [12]), because timing variations generated by hardware compo-
nents are abstracted away from the software programming model.
For example, a memory access instruction can take widely varying
amounts of time depending on the cache status, and code with
branches can take varying amounts of time depending on branch
predictor status. However, timing-sensitivity is important for crit-
ical systems: these timing characteristics can be exploited to create
covert channels that break security systems with a reasonable level
of practicality [10]. One might consider exposing to the software
level a low-level model of the microarchitecture that includes
timing information, as proposed by previous work [36]. However,
the complexity of modern processors prohibits deriving a sound
abstraction model for the hardware without digging into every
logic gate in the design. Even hardware designers themselves might
not be able to figure out the set of hardware components that are
responsible for the timing of each instruction. Sound enforcement
of information flow security policies demands tools that are tightly
integrated into the hardware design process.

Hardware is designed using programming languages known as
hardware description languages (HDL). Examples of HDLs include
Verilog and VHDL. Intuitively, it might seem that one could apply
information flow techniques from software languages directly to
HDLs. However, HDLs are different from software languages in
many aspects, and information flow analysis techniques for HDLs

3 Typically such tests are performed through a combination of hardware
simulation and prototyping on reconfigurable hardware.
4 Non-interference is may be too strong of a property for general purpose
systems, but is useful both in the context of crypto systems and safety crit-
ical designs, and it matches closely with the existing design goals expressed
by both Intel [5] and ARM [3].

Flip-flops Wires
Wires

Clk

CombinationalCombinational

LogicInput Output
Clk

Figure 1. Structure of a synchronous circuit design used by typical
modern processors. Flip-flops (e.g. registers) are controlled by a
global clock (Clk). Inputs and values of flip-flops are fed into
combinational logic, which finishes computation within a clock
cycle and writes to output or back to flip-flops on clock edges.

must be invented from scratch. In particular, there are three major
difference between software programming languages and HDLs:

Timing Model. In (most) software programming languages,
programs are defined as a sequence of commands that each trans-
late to a series of ISA instructions. The timing of each command
in the language depends upon a number of factors, including the
compiler implementation and hardware implementation as well as
the current state of the hardware. It is almost impossible to deter-
mine the precise timing of software programs. On the other hand,
hardware designs for modern processors are synchronous circuits
based on a global clock. Data coming from inputs or flip-flops (i.e.,
hardware registers) are wired into a combinational logic circuit for
computation, and the results are written to outputs or back to flip-
flops as shown in Figure 1. By definition of synchronous circuits,
state changes (i.e., changes to outputs and flip-flops) occurr only
at clock edges. Under this model, commands written in HDL, no
matter how complex, will become part of the combinational logic
and the results will not take effect until the next clock edge. All
forms of information flow in hardware designs are compressed into
a single clock cycle.

It might seem that this timing model makes information flow
analysis easier, due to centralized information and strict timing,
however it in fact makes hardware designs highly susceptible to
taint explosion when typical information flow analysis techniques
are applied. Specifically, any input to the combinational logic that is
tainted will potentially taint the entire hardware. Thus, it is not hard
to see that pure static analysis based on static type systems as used
in most software-based information flow mechanisms [26, 33] will
unavoidably lead to duplication of all hardware resources in order
to be statically verified for noninterference. The economic cost of
this duplication is not acceptable, and thus conventional techniques
are not adequate for our purpose.

Output Channels. Output channels are interfaces through which
attackers are able to observe data. For software programs, output
is usually implemented by well-defined library calls. In these
programs, information flow policies can be enforced by checking
that the security level of users who can observe the output is at
least the same as that of the data being output. In hardware designs,
there are no predefined “library calls” for I/O operations. Assuming
that attackers cannot wire-tap the circuits themselves, output can
be observed through a set of ports on the bus. Although enforcing
information flow policies on those ports is sound, it is a challenging
task to recover the system when violations are captured since the
rest of the system would have been largely tainted at the time of
output. This setup also makes it difficult to debug the source of
violations. Sapper aims at securing the system in a way that is not
only recoverable at runtime violations but also useful as a hardware
testing tool.

ISA Support. The ultimate goal of enforcing security policies
for HDLs is not to make the hardware itself more secure, but to
protect systems and applications running on top of the hardware.
This extra level of hierarchy makes HDLs different from software

programming languages in nature. In designing secure hardware,
not only do we need to ensure that the hardware design enforces
noninterference, but the hardware also needs to provide a corre-
sponding ISA interface for systems to interact with the security
mechanisms. Designing those ISAs in a formal and secure manner
can be a significant challenge.

The philosophy of Sapper is to reinvent information flow anal-
ysis techniques for hardware description languages, incorporating
all of the distinct characteristics and challenges of HDLs, to enable
the creation of efficient, flexible, practical and provably secure
computer architectures.

3. Overview of Sapper
We show that modern programming language techniques, when
applied in the new domain of hardware description languages
(HDLs), can provide static guarantees at design time along with
precise control of information flow. Specifically we propose Sapper,
a hardware description language that operates at the abstraction
of a high-level HDL while enforcing security policies through
statically-inserted logic for dynamic tracking and enforcement. A
compiler is be responsible for statically analyzing the program
in order to generate dynamic tracking and checking logic when
translating the program into Verilog, thereby delivering provable
guarantees. The generated logic will help eliminate most of the
security bugs in the hardware design during testing, and remain in
the design to prevent any runtime violations.

A typical Verilog program consists of three parts: signal declara-
tions that define registers and wires (i.e., variables), a synchronous
block in which all operations are triggered at the clock edge, and
a combinational logic block containing all of the computation that
will finish within a clock cycle. The synchronous block is respon-
sible for writing data back to flip-flops at clock edges. The combi-
national logic blocks contain commands that are similar to those in
software programming languages, including assignments, branches
and switch/cases. Sapper keeps most of the Verilog syntax and
requires minimum changes to the source code. In this section we
sketch the details of Sapper. For convenience we assume that the
security policy being enforced has two levels, Low and High, such
that High information should never affect Low information. Sapper
can handle arbitrary finite security lattices in practice.

3.1 Security Tags
Variables (i.e. signals, wires, etc.) in Sapper are associated with
security tags that are tracked and checked for security policy viola-
tions at runtime. Checking every data movement in hardware for
violations of noninterference would be extremely expensive, both
in terms of additional hardware and performance overhead. We
observe that in most hardware designs only certain outputs are
exposed and observable by software/programmers and thus require
strict enforcement. Many variables, such as internal pipeline regis-
ters and wires used to hold intermediate results, are only for tempo-
rary storage and are not directly observable. Those non-observable
variables only require security tags to be correctly tracked dynam-
ically so that their security level is correctly reflected at runtime.
However, if we only enforce security policies for those small set of
output ports, it may be extremely difficult for the system to “roll
back” from violations or to debug the cause of violations. To this
end, we propose Staged Enforcement, in which not only the end
output ports are enforced for security policies, but also a set of
architectural components that lie on the critical path of data move-
ment are enforced. For example, data movement to the memory
can be enforced for noninterference, such that the system can
capture violations immediately at the point when data touches the
memory. Based on the above observations, Sapper allows designers
to declare data variables as one of the following two categories:

• Enforced Tagged: Variables having enforced tags will be
declared with a default security tag at the beginning, and such
security tag will not change until it is explicitly modified in the
design through provided commands. Information flowing into
enforced tagged variables will always be checked for noninter-
ference.

• Dynamic Tagged: Variables with dynamic tags are not enforced
by security policies, but their tags are dynamically tracked at
runtime. Since most of the variables in typical hardware designs
are dynamic tagged, variables that are declared without any
initial security tags will be dynamic tagged by default.

This dichotomy requires designers to make decisions on what
data should be tracked versus enforced, but it is often an easy deci-
sion to make since typical architectures only consist of a small
portion of components exposed to users or central to data move-
ment. In many architectures, selecting enforced tags for all the bus
output ports, the memory and the cache will be sufficient. Note that
as long as the I/O ports are enforced, not enforcing policies on some
of the other components does not lead to unsoundness, but rather
makes the system less precise and thus harder to use. The Sapper
compiler is responsible for generating dynamic tracking logic and
inserting dynamic checks depending on the tag of the target vari-
able. Below we describe the details of tracking and enforcement.

3.1.1 Tracking
Assignments to dynamic tagged variables will trigger the tracking
of security levels: the maximum security level of information that
may affect the assigned value shall be propagated to the target
variable. Instead of generating tracking logic for every single logic
gate as in some previous work [31], Sapper takes advantage of static
analysis on the HDL code and inserts tracking logic aggregately at
the granularity of expressions and code blocks. Implicit flows (i.e.
conditionals) are also derived by the compiler, which inserts logic
to ensure sound security label propagation.

Furthermore, unlike previous work that must track information
through each bit because it lacks language-level information about
the hardware design and thus requires complex but precise tag
propagation logic, Sapper tracks information at the register level5

and uses simple logic to compute security levels (each variable has
an n-bit tag independent of its width and the security level of the
output is the least upper bound of the security levels of the inputs).
In theory, Sapper may be less precise (but still sound) compared to
bit-level tracking due to the coarser tracking granularity and relaxed
tag propagation. However we observe that the major purpose of
using precise bit-level tracking in previous work is to avoid label
creep and allow a secure switch from a High to Low context. In the
next section we will describe how the “nested states” feature we use
in Sapper provides exactly what is needed to satisfy this require-
ment. In fact, there is nothing that prohibits bit-level tracking in
Sapper, but we believe this is not necessary because the state trans-
forms can be expressed in the language itself rather than needing
to be inferred from the generated logic. Hence Sapper achieves
sufficient precision for security enforcement with significantly less
overhead while retaining a high degree of flexibility.

3.1.2 Enforcement
Any assignment to a variable with enforced tags needs to be
enforced for noninterference. Specifically, the security level of the
target variable can never be lower than the maximum security level
of information that may affect the assigned value. The necessary

5 Note that we do not mean only architectural registers here (like %eax), we
mean register-transfer-level register, which is any set of bits used as a group
in the hardware description language.

reg[7:0] a : L,
reg[7:0] a,b,c;

reg a tag b tag c tag;

Sapper Verilog

CHECK
reg[7:0] b, c;

a <= b & c;

reg a_tag,b_tag,c_tag;

if (a_tag>=(b_tag|c_tag))

a <= b & c;

[] b

CHECK

reg[7:0] a,b,c;

reg a_tag,b_tag,c_tag;

a <= b & c;

a tag <= b tag | c tag;

TRACK reg[7:0] a, b, c;

a <= b & c;

_ g _ g | _ g;

Figure 2. An 8-bit adder written in Sapper along with the gener-
ated Verilog code. There are two cases: in the first case register
a is enforced tagged hence the assignment needs to be checked for
noninterference; in the second case a is dynamic tagged hence only
tracking is needed.

enforcement conditions will be derived by the compiler and the
security checks will be automatically inserted into the resulting
logic. These assignments will take effect only when they are guar-
anteed to be secure. Sapper also provides some flexibility for
designers to deal with potential violations, which will be described
in 3.4. Figure 2 shows the generated Verilog code for an 8-bit-
and design written in Sapper. There are two different cases shown
in the figure, one with enforcement (CHECK) while another with
tracking (TRACK) only. Note that both the tracking and enforce-
ment logic are automatically generated by the compiler and there
is no need for designers to manually specify anything except the
initial enforced tags.

3.2 State Machines
Timing in most synchronous hardware designs is strictly aligned
to clock edges, and registers are only updated at clock edges. To
capture the notion of hardware timing, Sapper explicitly models
hardware designs as state machines. During a clock cycle the hard-
ware can only be in one of the machine’s logical states, and all the
logic from that state will be executed within the clock cycle. State
transitions take effect at clock edges. Another important motivation
behind modeling hardware as state machines is that state machines
are a common pattern used by hardware designers, and most hard-
ware designs are already written in or can be easily transformed to
state machines.

Since state transitions can be conditional, to catch implicit leaks
states must also have security tags and these tags must be correctly
propagated or checked during state transitions. In the same manner
as variables, states can be declared with enforced or dynamic tags.
The security level of states with dynamic tags will be tracked
dynamically at runtime, while states with enforced tags will be
enforced for noninterference and their security level will not change
until it is explicitly modified. An immediate advantage of Sapper is
that the same state (if dynamic tagged) can act at different security
levels dynamically, and hence the same piece of code can be reused
as long as context switches are securely controlled.

Additionally, state transitions carry information by definition.
To uphold noninterference, a transition from some state A to some
state B should only occur if A is lower than B. In the case of a
state machine diagram that is strongly connected (i.e. every state
can reach every other state), the existence of any High state will
require all states to be High (label creep). Sapper uses the concept
of nested states proposed by Li et. al [19] in previous work to
solve this problem. States can be organized hierarchically as a tree
structure. Within each clock cycle, before executing the logic of any
state, its parent state has to be executed first (recursively applied till
the root). To give parent states complete control of child states and
decide whether/when to fall into them, fall commands are used as
an indication of transfer from parent state to child state. By having

Root

reg[31:0] timer : L;

state Master:L = {
timer = 100;
goto Slave;

Master Slave

goto Slave;
}

state Slave:L = {
let state pipeline = {

// Pipeline logic

Pi li

// Pipeline logic
goto pipeline;

}
in

if (timer == 0) begin
t M tPipeline gotoMaster;

end else begin
timer <= timer - 1;
fall;

end
}

Figure 3. State Machine Diagram example of a secure hardware
controller, along with its corresponding implementation in Sapper.
Noninterference is achieved by having a trusted timer controlling
the behavior of the computation logic.

parent states with Low security levels and child states with High
security levels, Low states have the freedom to decide when to
terminate High states, without violating security.

Figure 3 shows an example of a state machine diagram for a
secure hardware design based on TDMA (Time Division Multiple
Access), which is a common design pattern used by secure systems.
A trusted timer (Low) is used to control the execution of untrusted
components. In particular, the Master state (trusted, labeled with
Low, enforced tagged) sets up a timer and transits to the Slave
state (also trusted, Low), which falls into its child state (potentially
untrusted, dynamic tagged) and executes the computation logic. At
the beginning of every cycle, the Slave State is always executed
first and the timer is checked. If the timer expires control will
transfer back to the Master State. The security level of the child
state (i.e. Pipeline State in the diagram) can be either High of Low
at runtime depending on the data it is dealing with. No matter
what level it is, it will never affect its parent states, thus enforcing
noninterference. The corresponding implementation in Sapper is
also shown on the side. The timer variable, Master state and Slave
state are provided with default types L (Low), indicating they are
enforced tagged; while the Pipeline State does not have any default
type, indicating it is dynamic tagged. When the code is compiled
down to Verilog, tracking and checking logic will be generated
based on a formal semantics. Although the runtime security level of
the Pipeline State is dynamically changing, the generated checking
logic will guarantee that the Master State is always trusted.

3.3 Manipulating Tags
One important advantage of Sapper compared to purely static
mechanisms is that security labels can be read, reacted upon and
updated at runtime. As we have defined earlier, the security level of
enforced tagged registers will not change until they are explicitly
modified through the language provided interface. This feature can
be used by system kernels to efficiently and securely share memory
among different security levels. Although we allow security tags
to be modified explicitly, they cannot be modified arbitrarily other-
wise information can be leaked through the labels. Sapper provides
pre-defined commands to allow modification of the security tags
of enforced tagged variables and states. Sapper language rules will
ensure that no information can be leaked: a) the security level of
any data can only be changed under a context whose level is not
higher than the data’s (e.g. Low data cannot be hoisted under a High
context), thus no information can flow from High to Low by manip-
ulating tags; b) When data is downgraded (e.g., changed from High
to Low) the data is automatically zeroed instantly to avoid leakage.

The logic for checking, changing the tag and zeroing the data is
generated by the Sapper compiler.

3.4 Violation Handling
To give hardware designers full flexibility to decide how to react
to runtime security violations, Sapper provides a language inter-
face for specifying the behavior when violation is about to happen.
The syntax is: [command] otherwise [actions]; which specifies that
if there exists any security violation in command, actions will be
executed in replace of command. Our compiler will analyze every
command that requires enforcement, derive necessary checks (in
the form of security tag comparisons) that guarantees noninterfer-
ence, and insert them into the design. The above code will become
the following after compilation: if (derived condition) [command]
else [actions].

Note that command will never be speculatively executed,
instead, only one of actions and command will get executed
depending on the value of condition. In the case when designers do
not provide “otherwise” for commands that require enforcement,
our compiler will automatically insert default “otherwise” actions
that are guaranteed to be secure (e.g., disabling the operation to
make it a noop). These otherwise rules can be defined recursively,
meaning that the action in the otherwise branch can itself have an
otherwise clause. These nested otherwise clauses are terminated
by the default, guaranteed safe action; thus all commands in the
program are guaranteed to be secure even if designers provide
buggy otherwise clauses.

4. Related Work
Denning and Denning were one of the first to show that high level
programming language techniques aided by static analysis can be
used to enforce information flow policies [8]. This approach was
formalized by Volpano [33] and is often implemented as language
extensions to existing languages [22, 28]. A more comprehen-
sive study of programming language techniques related to infor-
mation flow security is found in the survey by Sabelfeld and
Myers [26]. Other systems have explored tradeoffs between static
and dynamic approaches [29], exploring the space between these
two extremes—for example, inserting dynamic checks into the
program and then using static analysis to verify that the program
will be secure at runtime [4, 21, 25, 27].

While language-level techniques provide strong guarantees
inside applications, security enforcement between applications
relies on an underlying operating system. There are many approaches
tackling this problem from different angles [15–17, 24, 35]. Secu-
rity mechanisms at the OS level cannot provide full hardware /
software system security guarantees in the face of adversaries that
take advantage of information leakage in the underlying hardware
implementation, such as through caches [23] and branch predic-
tors [2]. Specific secure hardware component designs have been
proposed to defend against existing covert channel attacks [34].
More systematic approaches have also been proposed to control
timing channels through software/hardware contracts [36], quan-
titative measurements [7] or fuzzing mechanisms [20]. Towards
this end, various approaches have been proposed in previous work
towards analyzing and enforcing information flow security in hard-
ware designs, including Gate Level Information Flow Tracking
(GLIFT) [31] (and its extensions Execution Lease [30] and Star
Logic [32]) and Caisson [18, 19].

GLIFT tracks every single bit of information in the system
through each logic gate. Every bit in the system is associated
with a shadow bit to represent its security label (either High or
Low), and for every logic gate, a shadow logic is used to calculate
the resulting security level based on the security level of inputs
as well as the value of inputs. Despite GLIFT’s pure dynamic

nature, the tracking technique is guaranteed to be complete, i.e.
it covers both implicit flows and timing channels, since all forms
of information flow become explicit at the gate level. Being a
fine-grained dynamic tracking technique, GLIFT can result in a
substantial hardware overhead. To reduce this overhead, the authors
reworked their method to be used for static analysis in the form
of Star Logic [32]. It is important to see that Star Logic does
not provide assistance or early feedback for hardware designers
attempting to create secure hardware; instead it allows for the after-
the-fact static verification of a coordinated processor and kernel
design, which is not the same problem Sapper is solving.

In an attempt to bring a notion of security into hardware design
languages, Caisson takes techniques from information flow secu-
rity at the programming language level and applies them to HDLs,
making it possible to verify hardware security policies during
design. In Caisson, registers and wires are declared with static secu-
rity types, and typing rules are used to enforce security policies.
To avoid having to treat the design as simply a network of gates
(as in GLIFT) and to allow secure switching between High states
and Low states, Caisson requires an explicit state-machine-based
model for designing hardware. Despite the simplicity of static type
checking, it comes with two major problems: a) statically veri-
fying those properties requires that resources be hard partitioned
or even duplicated, resulting in large area overheads; and b) there
is no way for the system to ever examine, react to, or affect the
flow of program metadata (i.e., security labels). Labels are strictly
a concept used for analysis, and have no physical manifestation in
the final design.

While these past approaches represent a first generation of
secure hardware design tools, both the expressiveness of those
techniques (the class of hardware systems that could be shown to be
secure) and the efficiency of their implementations (the amount of
extra logic required to perform checks) can be prohibitively poor.

5. Conclusions and Future Work
As the current technology trends point to increasingly complex
hardware platforms and more special-purpose functionality, it is
time to reexamine the common assumptions that hardware is both
unchangeable and always completely correct with respect to the
documentation. While hardware security is a large area to explore,
information flow properties are one important aspect of any secure
design. This paper is a step towards a new class of tools that
inform hardware designers of the information flow ramifications of
their design choices and assist them in guarding against unforeseen
exploits. We prototype a novel hardware description language that
automatically augments a hardware design with appropriate secu-
rity checks so that it is impossible to violate secrecy or integrity as
defined by a policy lattice. The formal semantics and compilation
tool-chain is still under development.

There are still many details to be filled in and open questions
remaining, such as what kind of hardware and systems can be built
using Sapper. We are aiming at using Sapper to design fully func-
tional processors that contain modern architectural components and
that are able to run realistic applications.

Acknowledgments
This research was supported by NSF CCF-1117165. The views and
conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the sponsoring
agencies.

References
[1] OpenSPARC: World’s first free 64-bit microprocessors.

http://www.opensparc.net.

[2] O. Accigmez, J. pierre Seifert, and C. K. Koc. Predicting secret
keys via branch prediction. In The Cryptographers’ Track at the RSA
Conference, 2007.

[3] T. Alves. Trustzone: Integrated hardware and software security. ARM
white paper, 3(4), 2004.

[4] T. H. Austin and C. Flanagan. Efficient purely-dynamic information
flow analysis. In Proceedings of the ACM SIGPLAN Fourth Workshop
on Programming Languages and Analysis for Security, PLAS ’09,
pages 113–124, New York, NY, USA, 2009. ACM.

[5] R. Benadjila, O. Billet, S. Gueron, and M. J. Robshaw. The intel aes
instructions set and the sha-3 candidates. In Proceedings of the 15th
International Conference on the Theory and Application of Cryptology
and Information Security: Advances in Cryptology, ASIACRYPT ’09,
pages 162–178, Berlin, Heidelberg, 2009. Springer-Verlag.

[6] E. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press,
2000.

[7] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan. Side-
channel vulnerability factor: a metric for measuring information
leakage. In Proceedings of the 39th Annual International Symposium
on Computer Architecture, ISCA ’12, pages 106–117, Washington,
DC, USA, 2012. IEEE Computer Society.

[8] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Communications of the ACM, 20(7):504–513, 1977.

[9] A. Gattiker. An overview of integrated circuit testing methods. Micro-
electronics Failure Analysis Desk Reference, page 190, 2011.

[10] D. Gullasch, E. Bangerter, and S. Krenn. Cache games – bringing
access-based cache attacks on aes to practice. In Security and Privacy,
2011.

[11] Intel Corporation. AAJ1 Clarification of TRANSLATION LOOKA-
SIDE BUFFERS, Intel R⃝ CoreTM i7-900 Desktop Processor Extreme
Edition Series and Intel R⃝ CoreTM i7–900 Desktop Processor Series
Datasheet. May 2011.

[12] V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing- and
termination-sensitive secure information flow: Exploring a new
approach. In IEEE Symposium on Security and Privacy, 2011.

[13] K. Kaspersky and A. Chang. Remote code execution through Intel
CPU bugs. In Hack In The Box (HITB) 2008 Malaysia Conference.

[14] C. Kern and M. Greenstreet. Formal verification in hardware design:
a survey. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 4(2):123–193, 1999.

[15] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. sel4: formal verification of an os kernel.
In Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, SOSP ’09, pages 207–220, New York, NY, USA,
2009. ACM.

[16] M. Krohn and E. Tromer. Noninterference for a practical difc-based
operating system. In Security and Privacy, 2009.

[17] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris. Information flow control for standard os abstractions.
In Proceedings of twenty-first ACM SIGOPS symposium on Operating
systems principles, SOSP ’07, pages 321–334, New York, NY, USA,
2007. ACM.

[18] X. Li, M. Tiwari, B. Hardekopf, T. Sherwood, and F. T. Chong. Secure
information flow analysis for hardware design: using the right abstrac-
tion for the job. In Proceedings of the 5th ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security, PLAS ’10, pages
8:1–8:7, New York, NY, USA, 2010. ACM.

[19] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood,
and B. Hardekopf. Caisson: a hardware description language for
secure information flow. In Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation,
PLDI ’11, pages 109–120, New York, NY, USA, 2011. ACM.

[20] R. Martin, J. Demme, and S. Sethumadhavan. Timewarp: rethinking
timekeeping and performance monitoring mechanisms to mitigate

side-channel attacks. In Proceedings of the 39th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’12, pages 118–
129, Washington, DC, USA, 2012. IEEE Computer Society.

[21] S. Moore and S. Chong. Static analysis for efficient hybrid
information-flow control. In Proceedings of the 2011 IEEE 24th
Computer Security Foundations Symposium, CSF ’11, pages 146–160,
Washington, DC, USA, 2011.

[22] A. C. Myers, N. Nystrom, L. Zheng, and S. Zdancewic. Jif: Java infor-
mation flow. Software release. http://www.cs.cornell.edu/jif, 2001.

[23] C. Percival. Cache missing for fun and profit. In Proc. of BSDCan,
2005.

[24] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and
E. Witchel. Laminar: practical fine-grained decentralized informa-
tion flow control. In Proceedings of the 2009 ACM SIGPLAN confer-
ence on Programming language design and implementation, PLDI
’09, pages 63–74, New York, NY, USA, 2009. ACM.

[25] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security
analysis. In Proceedings of the 2010 23rd IEEE Computer Security
Foundations Symposium, CSF ’10, pages 186–199, Washington, DC,
USA, 2010. IEEE Computer Society.

[26] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 21(1),
Jan. 2003.

[27] A. Sabelfeld and A. Russo. From dynamic to static and back: Riding
the roller coaster of information-flow control research. In Ershov
Memorial Conference, 2009.

[28] V. Simonet. Flow Caml in a nutshell. In Proceedings of the first
APPSEM-II workshop, 2003.

[29] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. In Proceedings
of the 11th international conference on Architectural support for
programming languages and operating systems, ASPLOS XI, pages
85–96, New York, NY, USA, 2004. ACM.

[30] M. Tiwari, X. Li, H. M. G. Wassel, F. T. Chong, and T. Sher-
wood. Execution leases: a hardware-supported mechanism for
enforcing strong non-interference. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO
42, pages 493–504, New York, NY, USA, 2009. ACM.

[31] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood. Complete information flow tracking from the gates up.
In Proceedings of the 14th international conference on Architectural
support for programming languages and operating systems, ASPLOS
XIV, pages 109–120, New York, NY, USA, 2009. ACM.

[32] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hardekopf,
R. Kastner, F. T. Chong, and T. Sherwood. Crafting a usable micro-
kernel, processor, and i/o system with strict and provable information
flow security. In Proceedings of the 38th annual international sympo-
sium on Computer architecture, ISCA ’11, pages 189–200, New York,
NY, USA, 2011. ACM.

[33] D. Volpano, C. Irvine, and G. Smith. A sound type system for secure
flow analysis. J. Comput. Secur., 4, 1996.

[34] Z. Wang and R. B. Lee. A novel cache architecture with enhanced
performance and security. In Proceedings of the 41st annual
IEEE/ACM International Symposium on Microarchitecture, MICRO
41, pages 83–93, Washington, DC, USA, 2008. IEEE Computer
Society.

[35] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making
information flow explicit in histar. In Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementa-
tion - Volume 7, OSDI ’06, pages 19–19, Berkeley, CA, USA, 2006.
USENIX Association.

[36] D. Zhang, A. Askarov, and A. C. Myers. Language-based control
and mitigation of timing channels. In Proceedings of the 33rd ACM
SIGPLAN conference on Programming Language Design and Imple-
mentation, PLDI ’12, pages 99–110, New York, NY, USA, 2012.
ACM.

