
An Architecture Supporting Formal
and Compositional Binary Analysis

Joseph McMahan† Michael Christensen† Lawton Nichols† Jared Roesch‡ ∗

Sung-Yee Guo† Ben Hardekopf† Timothy Sherwood†

University of California, Santa Barbara†

University of Washington, Seattle‡{
jmcmahan, mchristensen, lawtonnichols

}
@cs.ucsb.edu,

jroesch@cs.washington.edu,
{

sguo, benh, sherwood
}

@cs.ucsb.edu

Abstract
Building a trustworthy life-critical embedded system re-
quires deep reasoning about the potential effects that se-
quences of machine instructions can have on full system op-
eration. Rather than trying to analyze complete binaries and
the countless ways their instructions can interact with one
another — memory, side effects, control registers, implicit
state, etc. — we explore a new approach. We propose an ar-
chitecture controlled by a thin computational layer designed
to tightly correspond with the lambda calculus, drawing on
principles of functional programming to bring the assem-
bly much closer to myriad reasoning frameworks, such as
the Coq proof assistant. This approach allows assembly-
level verified versions of critical code to operate safely in
tandem with arbitrary code, including imperative and un-
verified system components, without the need for large sup-
porting trusted computing bases. We demonstrate that this
computational layer can be built in such a way as to si-
multaneously provide full programmability and compact,
precise, and complete semantics, while still using hard-
ware resources comparable to normal embedded systems.
To demonstrate the practicality of this approach, our FPGA-
implemented prototype runs an embedded medical applica-
tion which monitors and treats life-threatening arrhythmias.
Though the system integrates untrusted and imperative com-
ponents, our architecture allows for the formal verification
of multiple properties of the end-to-end system, including a
proof of correctness of the assembly-level implementation

∗Contributions were made while a graduate student at UC Santa Barbara.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and /or a fee. Request permissions from permissions@acm.org.

ASPLOS ’17, April 08-12, 2017, Xi’an, China

c© 2017 ACM. ISBN 978-1-4503-4465-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037733

of the core algorithm, the integrity of trusted data via a non-
interference proof, and a guarantee that our prototype meets
critical timing requirements.

1. Introduction
Embedded devices are ubiquitous, with many now play-
ing roles that support human health, well-being, and safety.
The critical nature of these systems — automotive, medi-
cal, cryptographic, avionic — is at odds with the increasing
complexity of embedded software overall: even simple de-
vices can easily include an HTTP server for monitoring pur-
poses. Traditional processor interfaces are inherently global
and stateful, making the task of isolating and verifying criti-
cal application subsets a significant challenge. Architectural
extensions have been proposed that enhance the power, per-
formance, and functionality of systems, but no modern ar-
chitecture has been designed with formal program analysis
as a core motivating principle.

High-level, functional languages offer a remarkable abil-
ity to reason about the behavior of programs, but are often
unsuited to low-level embedded systems, where reasoning
must be done at the assembly level to give a full picture of
the code that will actually execute. At a high level, in a lan-
guage designed for verification, reasoning typically requires
relying on a language run-time that can be prohibitive for
resource-constrained or real-time embedded systems, and/or
require the assumption that thousands of lines of untrusted
code in the language stack are correct.

Another approach is to directly model the processor in-
terface by giving formal semantics to the ISA. However, rea-
soning about binary behavior on traditional architectures is
difficult and often left incomplete. Unless all program com-
ponents and architectural behaviors are included, any piece
outside the expected model could mutate a piece of machine
state and violate the assumptions of the verification effort.
Even using a verified compiler, assuming other modules are
correct, using only a subset of the ISA and assuming the rest

is ununsed, program-specific reasoning is still difficult —
i.e., reasoning about C still means reasoning about pointers,
memory mutation, and countless imperative, effectful behav-
iors.

We propose a system where the critical code can exe-
cute at the assembly level in a way that is very similar to
the underlying computational model that proof and reason-
ing systems are already built upon. Under such a mode of
computation, properties such as isolation, composition, and
correctness can be reasoned about incrementally, rather than
monolithically. However, instead of requiring a complete re-
programming of all software in a system, we instead exam-
ine a novel system architecture consisting of two cooperating
layers: one built around a traditional imperative ISA, which
can execute arbitrary, untrusted code, and one built around a
novel, complete, purely functional ISA designed specifically
to enable reasoning about behavior at the binary level. Ap-
plication behaviors that are mission critical can be hoisted
piecemeal from the imperative to the functional world as
needed.

Our proposed system, the Zarf Architecture for Recursive
Functions, observes the following properties:

1. The functional ISA, the “λ-execution layer,” is devoid
of all global or mutable state, and provides a compact,
complete, and mathematical semantics for the behavior
of instructions;

2. The imperative ISA is strictly separated from the func-
tional ISA, connected only via a communication channel
through which the system components can pass values;

3. The subset of the application which operates on the λ-
execution layer can be verified and reasoned about with-
out regard to the operation of the imperative components,
meaning that only the critical components need to be
ported and modeled;

4. Reasoning on the functional ISA is provably composable
— i.e., two separate pieces can be statically shown to
never interfere with each other.

To demonstrate the usefulness of this platform, we de-
velop, model, and test a sample application which imple-
ments an Implantable Cardio-Defibrillator (ICD) — an em-
bedded medical device which is implanted in a patient’s
chest cavity, monitors the heart, and administers shocks un-
der certain conditions to prevent or counter cardiac arrest.
Though ICDs provide life-saving treatment for patients with
serious arrhythmia, they, along with other embedded med-
ical devices, have seen thousands of recalls due to danger-
ous software bugs [44; 59]. By leveraging this two-layer ap-
proach, we are able to formally verify the correctness of
a low-level implementation of the core functions in Coq
and directly extract executable assembly code without need-
ing software runtimes. The ISA semantics allow us to con-
struct an integrity type system and formally prove that the
rest of the code never corrupts the inputs or outputs of

Provable Type Analysis 
Theorem Proving
Custom Analysis

Best Effort Analysis

Critical I/O

Standard I/O

App function binary

function binary coroutine
handler

λ-Execution Layer

C/asm

Traditional Microprocessor

lib

cr
iti

ca
l

cr
iti

ca
l

traditional binary

Figure 1. High-level Zarf system architecture: by dividing
the system into two hardware realms — one that provides
a precise, mathematical semantics for reasoning about pro-
gram behavior, and the other a standard imperative core for
legacy software — we can formally verify and otherwise rea-
son about critical subsets of applications without needing to
model and verify the entire program.

the critical functions. Furthermore, the functional abstrac-
tion built in to the binary code allows us to bound worst-
case execution time, even in the face of garbage collec-
tion. Taken altogether, we have an embedded medical ap-
plication whose core components have been proven correct,
where non-interference is guaranteed, where real-time dead-
lines are assured to be met, and where C code can execute
arbitrary auxiliary functions in parallel for monitoring. The
high-level system architecture is shown in Figure 1.

Given the significant amount of related efforts in verifi-
cation and ISA design, we begin by summarizing how our
work differs from previous efforts in the fields of verifica-
tion and architecture (Section 2). We then describe the Zarf
platform in more detail, define the semantics precisely, and
describe a hardware implementation, which runs the appli-
cation on an FPGA (Section 3). Details of our embedded
ICD software application and the ways it can leverage the
properties of the Zarf platform are described next (Section
4), followed by a discussion of the verification of multiple
properties of the critical sub-components of the ICD, cov-
ering correctness, timing, and non-interference (Section 5).
Finally, we evaluate this system architecture and approach,
presenting hardware resource requirements of the novel ISA,
and examine the performance loss of the verified compo-
nents when compared to an unverified C alternative (Section
6), and conclude.

2. Related Work
2.1 Verification
Our dual ISA approach, where one is untrusted and the other
trusted, draws in part on Rushby’s work on security ker-
nels [57]. He separates machine components into virtual
“regimes” and proves isolation. Having done so, Rushby

can then show that security is maintained when introduc-
ing clearly defined and limited channels of communication
whose information flow can be tracked. Our imperative and
functional ISAs behave as separate components, commu-
nicating only through a specified, dedicated channel, thus
eliminating any insecure information flow — via memory
contamination, for example.

Our security type system draws from the work done on
the Secure Lambda (SLam) calculus by Heintze and Riecke
[30] and its further development by Abadi et al. in their
Core Calculus of Dependency [6]. It also draws inspiration
from Volpano [66] et al., who created a type system for
secure information flow for an imperative block-structured
language. By showing that their type system is sound, they
show the absence of flow from high-security data to lower-
security output, or similarly, that low-security data does not
affect the integrity of higher-security data. Other seminal
work on secure information flow via the formulation of a
type system include Denning [20], Goguen [24], Pottier’s
information flow for ML [55], and Sabelfeld and Myers’s
survey on language-based information flow security [58].

Productive, expressive high-level languages that are also
purely functional are excellent source platforms for Zarf.
Even languages like Haskell, though, can have occasional
weaknesses that can lead to runtime type-errors. Subsets
such as Safe Haskell [63] shore up these loopholes, and
provide extensions for sandboxing arbitrary untrusted code.
Zarf provides isolation guarantees at the ISA level and
does not require runtimes, but relies on languages like Safe
Haskell for source code development.

Previous work on ISA-level verification has often in-
volved either simplified or incomplete models of the ar-
chitecture. These can be in the form of new “idealized”
assembly-like languages: Yu et al. [70] use Coq to apply
Hoare-style reasoning for assembly programs written in a
simple RISC-like language. They also provide a certified
memory management library for the machine they describe.
Chlipala presents Bedrock, a framework that facilitates the
implementation and verification of low-level programs [13],
but limits available memory structures.

Verification has also been done for subsets of existing
machines. For example, a “substantial” subset of the Mo-
torola MC68020 interface is modeled and used to mechan-
ically prove the correctness of quicksort, GCD, and binary
search [10]; other examples include a formalization of the
SPARC instruction set, including some of the more complex
properties, such as branch delay slots [46]; and subsets of
x86 [37]. One of the biggest efforts to date has been a formal
model of the ARMv7 ISA using a monadic specification in
HOL4 [23]. Moore developed Piton, a high level assembly
language and a verified compiler for the FM8502 micropro-
cessor [49], which complemented the verification work done
on the FM8502 implementation [33]. These are large efforts
because of the difficulty in reasoning about imperative sys-

tems. At higher levels of abstraction, entire journal issues
have been devoted to works on Java bytecode verification
[5].

In addition to proofs on machine code for existing ma-
chines, it is also possible to define new assembly abstrac-
tions that carry useful information. Typed assembly as an
intermediate representation was previously identified as
a method for Proof-Carrying Code [52], where machine-
checked proofs guarantee properties of a program [7]. Typed
assemblies and intermediate representations have seen ex-
tensive use in the verification community [69; 13; 43; 9] and
have been extended with dependent types [68], allowing for
more expressive programs and proofs at the assembly level.

SeL4, a fully verified OS kernel [38], required several
person-years of verification work. Verification is done at
higher levels of abstraction to make the problem tractable,
like modeling memory behavior at the C level [64].

Verified compilers are a popular topic in the verification
community [12; 51; 19; 62], the most well-known example
being CompCert [42], a verified C compiler. Verified com-
pilers are usually equipped with a proof of semantics preser-
vation, demonstrating that for every output program, the se-
mantics match those of the corresponding input program. A
verified compiler does not provide tools for, nor simplify the
process of doing, program-specific reasoning. One needs a
secondary tool-chain for reasoning about source programs,
such as the Verified Software Toolchain (VST) [8] for Com-
pCert. These frameworks often have a great cost, mandating
the use of sophisticated program logics, such as higher-order
separation logic in VST, in order to fully reason about possi-
ble program behaviors. Further, in many systems, it’s possi-
ble that not all source code is available; without being able to
reason about binary programs, guarantees made on a piece
of the source program (and preserved by the verified com-
piler) may be violated by other components. Extensions to
support combining the output of verified compilers, such as
separate compilation and linking, are still an active research
area [53; 56]. As work on verified compilers requires a se-
mantic model of the ISA, it is complemented by our work,
which gives complete and formal semantics for an ISA.

Previous work at the intersection of verification and bi-
ological systems has attempted to improve device reliabil-
ity through modeling efforts. This includes work that for-
mulates real-time automata models of the heart for device
testing [34], formal models of pacing systems in Z notation
[26], quantitative and automated checking of the interaction
of heart-pacemaker automata to verify pacemaker properties
[11], and semi-formal verification by combining platform-
dependent and independent model checking to exhaustively
check the state space of an embedded system [17]. Our work
is complemented by verification works such as these that
refine device specification by taking into account device-
environment interactions.

2.2 Architecture
The SECD Machine [41] is an abstract machine for evalu-
ating arithmetic expressions based in the lambda calculus,
designed in 1963 as a target for functional language compil-
ers. It describes the concept of “state” (consisting of a Stack,
Environment, Control, and Dump) and transitions between
states during said evaluation. Interpreters for SECD run on
standard, imperative hardware. Hardware implementations
of the SECD Machine have been produced [27], which ex-
plore the implementation of SECD at the RTL and tran-
sistor level, but present the same high-level interface. The
SECD hardware provides an abstract-machine semantics, in-
dicating how the machine state changes with each instruc-
tion. Our verification layer makes machine components fully
transparent, presenting a higher-level small-step operational
semantics, where instructions affect an abstract environment,
and a big-step semantics, which immediately reduces each
operation to a value. These latter two versions of the se-
mantics are more compact, precise, and useful for typical
program-level reasoning.

The SKI Reduction Machine [14] was a hardware plat-
form whose machine code was specially designed to do
reductions on simple combinators, this being the basis of
computation. Like our verification layer, it was garbage-
collected and its language was purely applicative. The goal
was to create a machine with a fast, simple, and complete
ISA. The choice to use the “simpler” SKI model means
that machine instructions are a step removed from the typ-
ically function-based, mathematical methods of reasoning
about programs. Our functional ISA, while also simple and
complete, chooses somewhat more robust instructions based
on function application; though the implementation is more
complicated, modern hardware resources can easily handle
the resulting state machine, giving a simple ISA that is suf-
ficiently high-level for program reasoning.

The most famous work on hardware support for func-
tional programming was on Lisp Machines [22; 40; 39]. Lisp
machines provided a specialized instruction set and data for-
mat to efficiently implement the most common list opera-
tions used in functional programming. For example, Knight
[39] describes a machine with instructions for Lisp primi-
tives such as CAR and CADR, and also for complex oper-
ations like CALL and MOVE. While these these machines
partially inspired this work, Lisp Machines are not directly
applicable to the problem at hand. Side-effects on global
state at the ISA level are critical to the operation of these ma-
chines, and while fast function calls are supported, the step-
wise register-memory-update model common to more tradi-
tional ISAs is still a foundation of these Lisp Machine ISAs.
In fact, several commercial Lisp Machine efforts attempted
to capitalize on this fact by building Lisp Machines as a thin
translation layer on top of other processors.

Flicker also dealt with architectural support for a smaller
TCB in the presence of untrusted, imperative code, but did

so with architectural extensions that could create small, inde-
pendent, trusted bubbles within untrusted code [45]. Our ar-
chitecture is almost inverted, with a trusted region providing
the main control, calling out to an untrusted core as needed.
Previous works such as NoHype [36] dealt with raising the
level of abstraction of the ISA and factoring software re-
sponsibilities into the hardware. Our verification layer shares
some of these characteristics, but deals with verification in-
stead of virtualization, as well as being a complete, self-
contained, functional ISA.

Previous work has explored the security vulnerabilities
present in many embedded medical devices, as well as zero-
power defenses against them [28; 25; 21]. The focus of our
work is analysis and correctness properties, and we do not
deal with security.

3. Hardware Architecture and ISA
Our system, Zarf, relies on two separate layers, running two
different ISAs, connected only by a data channel. This al-
lows one of the layers to be specialized to the execution
of machine code with 1) a compact, precise, and complete
semantics highly amenable to proofs, and 2) the ability to
compose verified pieces safely. It is entirely possible that all
code in the system be written to be purely functional and run
on the λ-execution layer: the ISA for this layer is complete.
However, embedded devices often contain a mix of software,
including legacy code or nice-to-have features that do not af-
fect the application’s behavior, such as relaying data and di-
agnostic information to outside receivers. With a two-layer
approach, we can run imperative code that is orthogonal to
the operation of critical application components while still
connecting with the vetted, functional code in a structured
way. This, in turn, allows code to be formally verified piece-
meal, with functions “raised” into the λ-execution layer as
deemed necessary.

The following subsections describe the interface and con-
struction of the λ-execution layer, including the reasons we
take an approach much closer to the lambda calculus under-
lying most software proof techniques, how we capture this
style of execution in an instruction set, the semantics for
that instruction set, and more practical considerations such
as I/O, errors, and ALU functions.

3.1 Design Goals
Normal, imperative architectures have been difficult to model,
and the task of composing verified components is still an
open problem [53; 56]. We identify the following features as
undesirable and counterproductive to the goal of assembly-
level verification:

1. Large amounts of global machine state (memory, stack,
registers, etc.) directly accessible to instructions, all of
which must be modeled and managed in every proof, and
which inhibit modularity: state may be modified by code
you haven’t seen.

2. The mutable nature of machine state, which prevents ab-
straction and composition when reasoning about func-
tions or sets of instructions.

3. A large number of instructions and features: a complete
model must incorporate all of them (e.g., fully mod-
eling the behavior of the ARMv7 was 6,500 lines of
HOL4 [23]).

4. Arbitrary control flow, which often requires complex and
approximate analyses to soundly determine possible con-
trol flows [29].

5. Unenforced function call conventions, meaning one must
prove that every function respects the convention.

6. Implicit instruction semantics, such as exceptions where
“jump” becomes “jump and update registers on certain
conditions.”

To avoid these traits, we design an interface that is small,
explicit in all arguments, and completely free of state manip-
ulation and side effects — with the exception of I/O, which
is necessary for programs to be useful. Without explicit state
to reference (memory and registers), standard imperative op-
erations become impossible, and we must raise the level of
abstraction. Instead of imperative instructions acting as the
building blocks of a program, our basic unit is the function.
This is a major departure from a typical imperative assembly,
where the notion of a “function” is a higher-level construct
consisting of a label, control flow operations, and a calling
convention enforced by the compiler — but which has no
definition in the machine itself. By bringing the definition
of functions to the ISA level, they become not just callable
“methods” that serve to separate out independent routines,
but are actually strict functions in the mathematical sense:
they have no side effects, never mutate state, and simply map
inputs to outputs. This change allows us to attach precise and
formal semantics to the ISA operations.

3.2 Description and Semantics
Zarf’s functional ISA is effectively an a) untyped, b) lambda-
lifted, c) administrative normal form (ANF) lambda calcu-
lus. Those limitations are a result of the implementation
being done in real hardware: a) to avoid the complexity of a
hardware type checker, the assembly is untyped; b) because
every function must live somewhere in the global instruction
memory, only top-level declarations of functions are allowed
(lambda-lifted); c) because the instruction words are fixed-
width with a static number of operands, nested expressions
are not allowed and every sub-expression must be bound to
its own variable (ANF). One bit is attached to values at run-
time to distinguish primitive integers from function objects;
this prevents malformed code from placing the machine in
an invalid state. Instructions use De Bruijn indices1 to refer

1 This is effectively using the stack offset of each variable in the local frame;
variables are placed on the “stack” automatically and static numbering is
easily determined.

x ∈ Variable n ∈ Z fn, cn ∈ Name ⊕ ∈ PrimOp

p ∈ ProgramF
−−−→
decl fun main = e

decl ∈ DeclarationF cons | func

cons ∈ ConstructorF con cn ~x

func ∈ FunctionF fun fn ~x = e

e ∈ ExpressionF let | case | res

let ∈ LetF let x = id −−→arg in e

case ∈ CaseF case arg of
−→
br else e

res ∈ ResultF result arg

br ∈ BranchF cn ~x ⇒ e | n ⇒ e

id ∈ IdentifierF x | fn | cn | ⊕

arg ∈ ArgumentF n | x

Figure 2. The Abstract Syntax for Zarf’s functional ISA. A
program is a set of function and constructor declarations,
where functions are composed solely of let, case, and
result expressions, and constructors are tuples with unique
names. Case expressions contain branches and serve as the
mechanism for both control flow and deconstruction of con-
structor forms. An arrow over any metavariable (e.g. ~x) sig-
nifies a list of zero or more elements. ⊕ refers to a function
that is implemented in hardware (such as ALU operations);
though the execution of the function invokes a hardware unit
instead of a piece of software, the functional interface is
identical to program-defined functions.

to data elements; since the references are localized and can-
not refer to any global state, together with immutability it
enforces referential transparency. The abstract syntax of the
λ-execution layer assembly is given in Figure 2.

All words in the machine are 32-bits. Each binary pro-
gram starts with a magic word, a word-length integer N stat-
ing how many functions are contained in the program, and
then a sequence of N functions. Each function starts with an
informational word that lets the machine know the “finger-
print” of the function (including the number of arguments
expected and how many locals will be used) and a word-
length integer M to specify that the body of the function is
M words long. The remaining M words of the function are
then composed entirely of the individual instructions of the
machine.

Each function, as it is loaded, is given a unique and se-
quential identifier starting at 0x100. These function identi-
fiers are the only globally visible state in the system and
serve as both a kind of name and a kind of pointer back to the
code. Other functions can refer to, test, and apply arguments
to function identifiers. There are two varieties of function

c ∈ Constructor = Name ×
−−−−→
Value clo ∈ Closure = (λ~x.e) ×

−−−−→
Value v ∈ Value = Z] Constructor] Closure ρ ∈ Env = Variable→ Value

` e ⇓ v

`
−−−→
decl fun main = e ⇓ v

(program) v = ρ(arg)
ρ ` result arg ⇓ v

(result)
~v1 = ρ(−−→arg) v2 = applyCn(cn,~v1) ρ[x 7→ v2] ` e ⇓ v3

ρ ` let x = cn −−→arg in e ⇓ v3

(let-con)

fn < {getint,putint} fun fn ~x2 = e2 ∈
−−−→
decl ~v1 = ρ(−−→arg) v2 = applyFn((λ~x2.e2, []),~v1,ρ) ρ[x1 7→ v2] ` e1 ⇓ v3

ρ ` let x1 = fn −−→arg in e1 ⇓ v3

(let-fun)

v1 = ρ(x2) ~v2 = ρ(−−→arg) v3 = applyFn(v1,~v2,ρ) ρ[x1 7→ v3] ` e ⇓ v4

ρ ` let x1 = x2
−−→arg in e ⇓ v4

(let-var) n2 is input from port n1 ρ[x 7→ n2] ` e ⇓ v
ρ ` let x = getint n1 in e ⇓ v

(getint)

~v1 = ρ(−−→arg) v2 = applyPrim(⊕,~v1) ρ[x 7→ v2] ` e ⇓ v3

ρ ` let x = ⊕ −−→arg in e ⇓ v3

(let-prim) n2 = ρ(arg) ρ[x 7→ n2] ` e ⇓ v
ρ ` let x = putint n1 arg in e ⇓ v

(putint)

(cn,~v1) = ρ(arg) (cn ~x ⇒ e1) ∈
−→
br ρ[~x 7→ ~v1] ` e1 ⇓ v2

ρ ` case arg of
−→
br else e2 ⇓ v2

(case-con)
n = ρ(arg) (n ⇒ e1) ∈

−→
br ρ ` e1 ⇓ v

ρ ` case arg of
−→
br else e2 ⇓ v

(case-lit)

(cn,−→v1) = ρ(arg) (cn ~x ⇒ e1) <
−→
br ρ ` e2 ⇓ v2

ρ ` case arg of
−→
br else e2 ⇓ v2

(case-else1)
n = ρ(arg) (n ⇒ e1) <

−→
br ρ ` e2 ⇓ v1

ρ ` case arg of
−→
br else e2 ⇓ v1

(case-else2)

applyFn((λ~x1.e,~v1),~v2,ρ) =

v if |~v2| = 0, |~v1| = |~x1|, and ρ[~x1 7→ ~v1] ` e ⇓ v
(λ~x1.e,~v1) if |~v2| = 0 and |~v1| < |~x1|

applyFn((λ~x1.e,~v1 :+ hd(~v2)),tl(~v2),ρ) if |~v2| > 0 and |~v1| < |~x1|

applyFn((λ~x2.e′,~v3),~v2,ρ) if |~v2| > 0, |~x1| = |~v1|, and ρ[~x1 7→ ~v1] ` e ⇓ (λ~x2.e′,~v3)

applyCn(cn ,~v) =

(cn,~v) if (con cn ~x) ∈
−−−→
decl and |~v| = |~x|

(λ~x.let c = cn ~x in result c,~v) if (con cn ~x) ∈
−−−→
decl and |~v| < |~x|

ρ(arg) =

n if arg = n
v if arg = x and (x 7→ v) ∈ ρ

applyPrim(⊕,~v1) =

v if |~v1| = arity(⊕) and v = eval(⊕,~v1)
(λ~x1.let x2 = ⊕ ~x1 in result x2,~v1) if |~v1| < arity(⊕) and |~x1| = arity(⊕)

Figure 3. Big-Step Semantics for Zarf’s functional ISA. Our semantics is a ternary relation on an environment (a mapping
from variables to values); a let, case, or return expression; and the value to which this expression evaluates. Program evaluation
begins with the main function’s body expression. applyFn (applyCn) performs function (constructor) application. Applying
a helper function which accepts one argument to a list of arguments is shorthand for mapping that helper function over the list.
~x :+ y appends y to the end of ~x, creating a new list. ρ[x 7→ v] returns an updated copy of the environment with x mapped to
v. |~x| means length of the list ~x. eval returns the value of applying a primitive operation to arguments. Because functions are
lambda-lifted, our version of closures track the list of values to be applied upon saturation, rather than an entire environment
like normal closures. Although it appears that syntax is being created dynamically during the second cases of applyCn and
applyPrim, we can treat each constructor or primitive operator as having a predefined body that evaluates to that constructor
or primitive application, respectively, such that this transformation only occurs once and is thus static. getint gets an integer
from a specified port, and putint puts an integer onto a specified port; both are the only mechanisms for I/O in the system.

identifiers: those that refer to full functions that contain a
body of code, and “constructors,” which have no body at all.
Constructors are essentially stub functions and cannot be ex-
ecuted. However, just like other functions, you can apply ar-
guments to them. These special function identifiers thus can
serve as a “name” for software data types, where arguments
are the composed data elements. (In more formal terms, you
can use our constructors to implement algebraic data types.)

The words defining the body of a function are built out
of just three instructions: let, case, and result, which
we will describe below. Unlike RISC instructions, let and
case can be multiple words long (depending on the number
of arguments and branches, respectively). However, unlike
most CISC instructions, each piece of the variable length
instruction is also word-aligned and trivial to decode.

The λ-execution layer has no programmer-visible regis-
ters or memory addresses, but instructions will still need to
reference particular data elements. Instructions can refer to
data by its source and index, where the source is one of a
predefined set — e.g., local and arg, which serve a purpose
similar to the stack on a traditional machine. The local and
arg indices might be analogous to stack offsets, while the
actual addresses themselves are never visible.

Figure 3 gives the complete ISA behavior using a big-
step semantics, which explains how each instruction reduces
to a value. This semantics uses eager evaluation for simplic-
ity; though the current hardware implementation uses lazy
semantics, the difference is not observable in our applica-
tion because I/O interactions are localized to a specific func-
tion and always evaluated immediately. The semantics use
assembly keywords for readability; Figure 4 shows how the
assembly maps one-to-one with the binary encoding, and
Figure 6 shows how low-level Coq code can be directly con-
verted to our assembly.

3.3 Instruction Set
The let instruction applies a function to arguments and as-
signs it a local identifier, which are sequential numbers that
begin at 0 for each function. The first word in the let in-
struction indicates a function identifier or closure object and
the number of argument words that follow. Each argument
word consists of a source and an index, indicating where the
argument value should be pulled from and which value to
pull. Note that unlike a function “call”, let does not imme-
diately change the control flow or force evaluation of argu-
ments; rather it creates a new structure in memory (closure)
tying the code (function identifier) to the data (arguments),
which, when finally needed, can actually be evaluated (using
lazy evaluation semantics). Additionally, the let instruction
allows partial application, meaning that new functions (but
not function identifiers) can be dynamically produced by ap-
plying a function identifier to some, but not all, of its argu-
ments.

The case instruction provides pattern-matching for con-
trol flow. It takes a value, then makes a set of equality com-

parisons, one for each “pattern” provided. The first word of
the case instruction indicates a piece of data to evaluate. As
we need an actual value, this is the point in execution that
forces evaluation of structures created with let— however,
it is evaluated only enough to get a value with which com-
parisons can be made; specifically, until it results in either
an integer or a constructor object2. The first word of the in-
struction is followed by additional words encoding patterns
against which to match the argument. A pattern literal
argument contains both an integer value to match against
and a number of words n to skip if the match fails. If the
case value exactly equals the literal value in the instruction
word, then execution continues with the next instruction. If
not equal, n instruction words are skipped, which brings ex-
ecution to the next branch of the case. The pattern cons
takes a similar argument, but the integer value indicates a
function identifier to match against. The match succeeds if
and only if 1) the case instruction was attempting to match
a constructor, not an integer, and 2) the constructor is the
same as specified in the pattern cons. Skips are handled
in the same way. Finally, a matching pattern else is re-
quired for every case which will be executed when no other
matches are found (and demarcates the end of the case in-
struction encoding). Case/pattern sequences not adhering to
the encoding described are malformed and invalid — e.g.,
you cannot skip to the middle of a branch, or have a case
without an else branch.

The result instructions are a single word, indicating a
single piece of data that the current function should yield.
Every branch of every function must terminate with a result
instruction (disallowing re-convergent branches means the
simple pattern-skip mechanism is all that is necessary for
control flow). Functions that do not produce a value do not
make sense in an environment without side effects, and so
are disallowed. After a result, control flow passes to the
case instruction where the function result was required.

We realize that this is a departure from traditional hard-
ware instructions and suggest reference to Figure 4 to help
ground our descriptions in a concrete example. Figure 4
shows a small function, map, written in high-level assembly,
machine assembly, and encoded as a binary.

3.4 Built-In Functions, I/O, and Errors
ALU operations are, for the most part, already purely math-
ematical functions — they just map inputs to an output. The
Zarf functional ISA is built around the notion of function
calls, so no new mechanism or instructions are needed to use
the hardware ALU. Invoking a hardware “add” is the same
as invoking a program-supplied function. In our prototype,
function indices less than 256 (0x100) are reserved for hard-
ware operations; the first program-supplied function, main,
is 0x100, with functions numbered up from there. During

2 More precisely, evaluation of that argument will always produces a result
in Weak Head-Normal Form (WHNF), but never a lambda abstraction.

Figure 4. How the high-level assembly instructions are directly compiled into a Zarf binary for λ-execution layer execution.
This example shows the map function, along with the list constructors, in (a) high-level untyped assembly, (b) machine
assembly, and (c) binary. (a) The standard linked-list definition requires just two constructors: a list is either empty or a 2-
element struct containing a head (a value) and a tail (a list) [lines 1-2]. The function map takes a function and a list as arguments
[line 3]; it builds a new list, applying the function to each list element. If the argument list is empty, it returns an empty list
[lines 5-6]. Otherwise, if the list matches against the head/tail constructor [line 7], it applies the function it was given to the
list element [lines 8-9], calls map recursively on the list tail [lines 10-12], builds a new list [lines 13-15], and yields that new
list [line 16]. The else branch is not shown. (b) In the lowering to machine assembly, names are replaced with local indices,
addressing a value on the locals stack (e.g., list′ becomes local 2 [line 13]). Function allocations are broken up so that each
argument occupies its own word. (c) The binary is a direct mapping from the assembly in (b), simply translating ops to opcodes
and data sources to integer identifiers. ‘x’ indicates an unused field. (d) Binary encoding. Each word of the binary is either
the start of a function, the start of an instruction, or an argument word in a let instruction. With no architecturally visible
state, data is accessed with a scoped system where the program identifies source and index; all data references use the same
source/index pattern.

evaluation, if the machine encounters a function with an in-
dex less than 0x100, it knows to invoke the ALU instead of
jumping to a space in instruction memory.

The only two functions with side-effects in the system,
input and output, are also primitive functions. The input
function takes one argument (a port number) and returns a
single word from that port; the output function takes two
arguments, a port and a value, and writes its result to the
port, returning the value written. Since data dependencies are
never violated in function evaluation, software can ensure
I/O operations always occur in the right order even in a
pure functional environment by introducing artificial data
dependencies; this is the principle underlying the I/O monad
[48; 32], used prominently in languages like Haskell.

In a purely functional system there are no side effects,
and thus no notion of an “exception”. For program-defined
functions, this just requires that every branch of every case
return a value (that value could be a program-defined er-
ror). However, some invalid conditions resulting from a mal-
formed program can still occur at runtime. To respect the
purely functional system, these must cause a non-effectful
result that is still distinguishable from valid results. Our so-
lution is to define a “runtime error constructor” in the space

of reserved functions. Every function, both hardware- and
software-defined, can potentially return an instance of the
error constructor. The ISA semantics are undefined in these
error cases, because it’s very easy to avoid — compiling
from any Hindley-Milner typechecked language will guar-
antee the absence of runtime type errors [31; 47].

4. System Software
This section describes the software architecture across the
two realms (functional and imperative) of the system, and
provides an overview of the ICD and the functional corou-
tines.

4.1 Functional vs. Imperative
As our system is composed of two small and separate com-
putational layers, the software is split across two different
ISAs. For existing applications, or applications prototyped
for existing platforms, the decision of which components to
migrate to the λ-execution layer represents a trade-off of in-
creased abstraction and verification capability for additional
development effort and some decrease in performance. Sec-
tion 6 provides some quantitative worst-case bounds for this
trade-off.

Figure 5. The ECG takes input signals sampled at 200 Hz
and filters them multiple times, after which the peaks are
classified and the rate of heartbeat determined. These values
are fed to an ATP (antitachycardia pacing) procedure, which
decides if ventricular tachycardia is occurring based on cur-
rent and previous heart rate, and administers pacing shocks
to prevent acceleration and ventricular fibrillation (a form of
cardiac arrest).

The λ-execution layer runs a small microkernel based
on cooperative coroutines [16; 50] to handle the scheduling
and communication of different software components. This
allows us to more easily group and reason about code in
terms of higher-level behaviors — i.e., the small surface
area of each coroutine means they can be considered (and
occasionally verified) in blocks, as collections of functions
with a single specification and interface. The cooperative
nature of the system is a design choice that allows us to
avoid interrupts, which would complicate proofs of a single
coroutine’s behavior. Timing analysis (section 5.2) ensures
each coroutine always returns control.

The λ-execution layer enables reasoning about these
coroutines at the assembly and binary level. Section 5
demonstrates different properties that can be verified. The
integrity type system allows a developer to statically prove
that a given set of coroutines (and the microkernel itself)
will execute in cooperation without one coroutine corrupting
values important to another. This composability of verifica-
tion is extremely difficult on traditional architectures, as the
global and mutable nature of all state makes it quite easy for
any software component to affect any other.

The imperative layer — which can be any embedded
CPU, but for our purposes is a Xilinx MicroBlaze proces-
sor — runs whatever pieces of the software are not placed

on the λ-execution layer. This allows for monitoring soft-
ware, low-level drivers, communication protocols, and other
complex, imperative code to exist and run without requiring
modeling or pure-functional implementations. As this area
of the system is untrusted and unverified, anything on which
the critical components depend should be rewritten to run on
the λ-execution layer.

In our sample application, three application coroutines
are run on the λ-execution layer: one that handles the core
ICD application, an I/O routine that handles the timing of
reading the values from the patient’s heart and outputting
when shocks should occur, and a routine that sends values to
the monitoring software on the imperative layer. The system
operates in real-time, reading a single value from the heart,
running ECG and ICD processing, and communicating the
resulting value back out. In our application, the monitoring
software tracks the number of times treatment occurs, and,
when prompted from its communication channel, will out-
put that number. This imperative software could be arbitrar-
ily complex and handle more complicated monitoring and
diagnosis, communication drivers to communicate with the
outside world, or other features; as it is a standard impera-
tive core, any embedded C code can be easily compiled for
it with an off-the-shelf compiler.

4.2 ICD
ICDs are small, battery-powered, embedded systems which
are implanted in a patient’s chest cavity and connect directly
with the heart. For patients with arrhythmia and at risk for
heart failure, an ICD is a potentially life-saving device. Cur-
rently, the primary use of ICDs is to detect dangerous ar-
rhthymias (such as ventricular tachycardia, or VT) and ad-
minister pacing shocks (anti-tachycardia pacing, or ATP).
These shocks help prevent the acceleration in heart rate lead-
ing to ventricular fibrillation, a form of cardiac arrest.

From 1990 to 2000, over 200,000 ICDs and pacemakers
were recalled due to software issues [44]. Between 2001 and
2015, over 150,000 implanted medical devices were recalled
by the FDA because of life-threatening software bugs [59].
However, ICDs are credited with saving thousands of lives;
for patients who have survived life-threatening arrhthymia,
ICDs decrease mortality rates by 20-30% over medication
[15; 65; 60]. Currently, around 10,000 new patients have an
ICD implanted each month [3], and around 800,000 people
are living with ICDs [2].

The core of our ICD is an embedded, real-time ECG al-
gorithm that performs QRS3 detection on raw electrocardio-
gram data to determine the timing between heartbeats. We
work off of an established real-time QRS detection algo-
rithm [54], which has seen wide use and been the subject
of studies examining its performance and efficacy [18]. An

3 The “QRS complex” is made up of the rapid sequence of Q, R, and S
waves corresponding to the depolarization of the left and right ventricles of
the heart, forming the distinctive peak in an ECG.

open-source update of several versions of the algorithm [4] is
available; we use the results of this open-source work as the
basis of our algorithm’s specification as well as the C alter-
native. After the ECG algorithm detects the pacing between
heartbeats, the ATP function checks for signs of ventricu-
lar tachycardia and, if found, administers a series of pacing
shocks. We implement the VT test and ATP treatment pub-
lished in [67].

The I/O coroutine is passed the output of the previous
iteration of the ICD coroutine. A hardware timer is used to
ensure that I/O events occur at the correct frequency. When
the correct time has elapsed (5 ms), the I/O coroutine outputs
the given value and reads the next input value. It yields this
value to the microkernel.

This input is then passed through to the ICD coroutine,
which implements a series of filter passes to detect the spac-
ing between QRS complexes (Figure 5 illustrates the ECG
filter passes). If 18 of the last 24 beats had periods less than
360 ms (corresponding to a heart rate greater than 167 bpm),
the ICD coroutine moves into a treatment-administering
state, where it outputs three sequences of eight pulses at 88%
of the current heartrate, with a 20 ms decrement between se-
quences. This is designed to prevent continued acceleration
and restore a safe rhythm.

The monitoring software, which runs on the MicroBlaze,
receives the output of the ICD coroutine each cycle. A com-
mand can be given on the diagnostic input channel for the
software to output the number of times treatment has oc-
curred.

I/O events occur at a fixed frequency of 200 Hz. Timing
analysis in section 5.2 confirms that, after an input event,
the entire cycle of each coroutine running and yielding,
including garbage collection, is able to conclude well within
the 5 ms window, meaning that the entire system is always
able to meet its real-time deadline.

5. Verification
We separate the verification of the embedded ICD applica-
tion into three parts: verification of the correctness of the
ICD coroutine, a timing analysis to show that the assembly
meets timing requirements in the worst case, and a proof of
non-interference between the trusted ICD coroutine and un-
trusted code outside of it.

5.1 Correctness
We first implement a high-level version of the application’s
critical algorithms (the ECG filters and ATP procedure)
in Gallina, the specification language of the Coq theorem
prover [1], using this version as our specification of func-
tional correctness. This specification operates on streams —
a data type that represents an infinite list — by taking a
stream as input and transforming it into an output stream.
By sticking to a high-level, abstract specification, we can
be more confident that we have specified the algorithm cor-

Figure 6. Extraction of verified application components,
summarized for a small excerpt. (a) The high-level Coq
specification is written to operate on Streams (infinite lists);
values are pulled from the front of the stream. (b) An inter-
mediate version is written in Coq which operates on integers
instead of streams, and unfolds nested operations so each
function call and arithmetic operation takes one line. This
intermediate version is proven equivalent in Coq to the high-
level specification — meaning that repeated recursive appli-
cation of (b) will always output the same sequence of values
as (a). (c) A simple extractor just replaces the keywords in
(b) to produce valid assembly code that can run on the Zarf
λ-execution layer.

rectly. An ICD implementation cannot operate on streams,
as all data is not immediately available; instead, it takes a
single value, yields a single value, and then repeats the pro-
cess.

The form of the correctness proof is by refinement: first,
we create a Coq implementation of the ICD algorithm that
is “lower-level” than the Coq specification. This lower-
level implementation operates on machine values rather than
streams, isolates function applications to let expressions, and
avoids the use of “if-then-else” expressions, among other
trivially-resolved differences. We then create an extractor
that converts this lower-level Coq code directly into exe-
cutable Zarf functional assembly code (see Figure 6). If,
for all possible input streams, we can prove that the out-
put stream produced by the high-level Coq specification is
the same sequence of values produced by the lower-level
implementation, we can conclude that the program we run
on the Zarf λ-execution layer is faithful to the high-level
Coq specification. This proof of equivalence between the
two Coq implementations is done by induction over the pro-
gram, showing that if output has matched up to point N, and
the computation of value N is equivalent, then value N + 1

will be equivalent as well. As compared to extracting for an
imperative architecture, we avoid needing to compile func-
tional operations to an imperative ISA and do not require a
large software runtime — or any software runtime at all. The
translation simply replaces Coq keywords with λ-execution
layer assembly keywords.

The full proofs of correctness of the assembly-level crit-
ical ECG and ATP functions take under 2,500 lines of
Coq. The implementations are converted line-for-line into
λ-execution layer assembly code, which is combined with
assembly for the microkernel and other coroutines.

In total, the Trusted Code Base for the correctness proof
includes: the hardware, the Coq proof assistant, and the
small extractor that converts the low-level Coq code into
Zarf functional assembly code. All other code is untrusted
and may be incorrect, and the proof will still hold. The high-
level ISA and clearly-defined semantics make this very small
TCB possible, allowing the exclusion of language runtimes,
compilers, and associated tooling that is frequently present
in the TCB in verification efforts.

5.2 Timing
With a knowledge of how the λ-execution layer hardware ex-
ecutes each instruction, we create worst-case timing bounds
for each operation. In general, in a functional setting, un-
bounded recursion makes it impossible to statically pre-
dict execution time of routines. Though our application uses
infinite recursion to loop indefinitely, the goal is to show
that each iteration of the loop meets the real-time deadline;
within that loop, each coroutine is executed only once, and
no functions call into themselves. This allows us to com-
pute a total worst-case execution time for the sum of all the
instructions by extracting the worst-case route through the
hardware state machine to execute each possible operation.
For example, applying two arguments to a primitive ALU
function and evaluating it has a maximum runtime of 30 cy-
cles — this includes the overhead of constructing an object
in memory for the call, performing a function call, fetching
the values of the operands, performing the operation, mark-
ing the reference as “evaluated” and saving the result, etc. In
an average case, only a fraction of the possible overhead will
actually be invoked (see section 6 for CPI averages).

Hardware garbage collection is a complicating factor on
timing. GC can be configured to run at specific intervals or
when memory usage reaches a certain limit; for our applica-
tion, to guarantee real-time execution, the microkernel calls
a hardware function to invoke the garbage collector once
each iteration. To reason about how long the garbage col-
lection takes, we bound the worst-case memory usage of a
single iteration of the application loop. The hardware imple-
ments a semispace-based trace collector, so collection time
is based on the live set, not how much memory was used
in all. For the trace-collector state machine, each live object
takes N+4 cycles to copy (for N memory words in the ob-
ject), and it takes 2 cycles to check a reference to see if it’s

already been collected. We bound the worst-case by conser-
vatively assuming that all the memory that is allocated for
one loop through the application might be simultaneously
live at collection time, and that every argument in each func-
tion object may be a reference which the collector will have
to spend 2 cycles checking.

From the static analysis, we determine that the worst
execution of the entire loop is 4,686 cycles, not includ-
ing garbage collection. Garbage collection is bounded by
a worst-case of 4,379 cycles, making a total of 9,065 cy-
cles to run one iteration of system — or 181.3 µs on our
FPGA-synthesized prototype running at 50 MHz, falling
well-within the real-time deadline of 5 ms.

5.3 Non-Interference
Because the ICD coroutine has been proven correct (Sec-
tion 5.1), we treat its output as trusted. This output must
then travel through the rest of the cooperative microkernel
until it reaches the outside world via the I/O coroutine’s
putint primitive. In order to guarantee the integrity of this
data (meaning it is never corrupted nor influenced by less-
trusted data), we rely on a proof of non-interference. Non-
interference means that “values of variables at a given secu-
rity level ` ∈ L can only influence variables at any security
level that is greater than or equal to ` in the security lattice
L” [35]. In a standard security lattice, L (low-security) v
H (high-security), meaning that high-security data does not
flow to (or affect) low-security output. In our application,
however, we are concerned with integrity; our lattice is com-
posed of two labels, T (trusted) and U (untrusted), organized
such that T v U. Therefore, our integrity non-interference
property is that untrusted values cannot affect trusted values
[58].

To prove this about the λ-execution layer, we create a
simple integrity type system that provides a set of typing
rules to determine and verify the type of each expression,
function, and constructor in a program. After providing
trust-level annotations in a few places and constraining the
normal λ-execution layer semantics slightly to make type-
checking much easier, we can run a type-checker over the
resulting λ-execution layer code to know whether it main-
tains data integrity. We extend the original λ-execution layer
syntax to allow for these type annotations, as follows:

`, pc ∈ LabelF T | U

τ ∈ TypeF num` | (cn, ~τ) | (~τ→ τ)

func ∈ FunctionF fun fn x1 :τ1, . . . , xn :τn :τ = e

cons ∈ ConstructorF con cn x1 :τ1, . . . , xn :τn

Specifically, following the spirit of Abadi et al. [6] and
Simonet [61], types are inductively defined as either labeled
numbers, or functions and constructors composed of other
types. Our proof of soundness on this type system follows
the approach done in work by Volpano et al. [66]. We show

Resource λ-execution layer MicroBlaze
LUTs 4,337 1,840
FFs 2,779 1,556

Cycle Time 20ns (50 MHz) 10ns (100 MHz)

Table 1. Resource usage of the λ-execution layer and basic
MicroBlaze (3-stage pipeline), the two layers of Zarf, when
synthesized for a Xilinx Artix-7 FPGA. In total, the logic of
the λ-execution layer uses 29,980 gates.

that if an expression e has some specific type τ and evaluates
to some value v, then changing any value whose type is
less-trusted than e’s type results in e evaluating to the same
value v; thus, we show that arbitrarily changing untrusted
data cannot affect trusted data. We prove soundness case-
wise over the three types of expressions in our language,
combining our evaluation semantics with our security typing
rules.

6. Evaluation
To validate our designs, we download the λ-execution layer
hardware specification onto a Xilinx Artix-7 FGPA and run
our sample application. For a comparison, we also run a
completely unverified C version of the application on a Xil-
inx Microblaze on the same FPGA. Hardware synthesis re-
sults are summarized in Table 1.

The hardware description of the λ-execution layer is
more complex than a simple embedded CPU, with 66 to-
tal states of control logic (4 deal with program loading, 15
with function application, 18 with function evaluation, and
29 with garbage collection). In all, the combinational logic
takes 29,980 primitive gates (roughly the size of a MIPS
R3000), or 4,337 LUTs when synthesized for an Artix-7
FPGA (less than 7% of the available logic resources). Es-
timated on 130nm, the combinational logic takes up .274
mm2. Though larger than very simple embedded CPUs, the
λ-execution layer is still quite a bit smaller than many com-
mon embedded microcontrollers.

From a dynamic trace of several million cycles, the ICD
application exhibited the following average CPI for each in-
struction type. Let instructions had an average of 5.16 argu-
ments and took on average 10.36 cycles. Case instructions
averaged at 10.59 cycles; each branch head in a case takes
exactly 1 cycle to check if the branch matches. Results
took 11.01 cycles on average. The total dynamic CPI across
the trace was 7.46 (or 11.86 if garbage collection time is
included). Approximately one third of the dynamic instruc-
tions were branch heads.

The C version of the ICD application on the MicroBlaze
takes fewer than one thousand cycles for each iteration of the
application. The analysis in section 5.2 discusses the worst-
case runtime of the λ-execution layer application, which is
around 9,000 cycles or 180 µs (though much faster in the
typical case). This is in addition to a longer cycle time (see

Table 1). When compared to the carefully optimized and tiny
MicroBlaze, our experimental prototype uses approximately
twice the hardware resources, and the application is around
20x slower in the worst case than Microblaze in the common
case — but is still over 25 times faster than it needs to be to
meet the critical real-time deadlines, all while adding invalu-
able guarantees about the correctness of the most critical ap-
plication components and assurance of non-interference be-
tween separate functions.

7. Conclusion
As computing continues to automate and improve the control
of life-critical systems, new techniques which ease the devel-
opment of formally trustworthy systems are sorely needed.
The system approach demonstrated in this work shows that
deep and composable reasoning directly on machine instruc-
tions is possible when the architecture is amenable to such
reasoning. Our prototype implementation of this concept
uses the λ-execution layer to control the operation of criti-
cal components in a way that allows assembly-level verified
versions of critical code to operate safely in close partner-
ship with more traditional and less-verified system compo-
nents without the need to include run-times and compilers
in the TCB. We take a holistic approach to the evaluation
of this idea, not only demonstrating its practicality through
an FPGA-implemented prototype, but furthermore showing
the successful application of three different forms of static
analysis at the assembly level of the λ-execution layer.

As we move to increasingly diverse systems on chip, het-
erogeneity in semantic complexity is an interesting new di-
mension to consider. A very small core supporting highly
critical workloads might help ameliorate critical bugs, vul-
nerabilities, and/or excessive high-assurance costs. A core
executing the Zarf ISA would take up roughly 0.002% of a
modern SoC. Our hope is that this work will begin a broader
discussion about the role of formal methods in computer ar-
chitecture design and how it might be embraced as a part,
rather than an afterthought, of the design process.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. 1239567, 1162187, and
1563935.

We’d like to thank Nicholas Brown, Benjamin Campbell,
Tristan Konologie, Bingbin ‘Clara’ Liu, and Benjamin Spitz
for their work on related system infrastructure; Kyle Dewey,
for his system and typesystem critiques; and the anonymous
reviewers, for their invaluable feedback.

References
[1] The Coq proof assistant: https://coq.inria.fr.

[2] How many people have ICDs? http://asktheicd.com/tile/106/

english-implantable-cardioverter-defibrillator-icd/

how-many-people-have-icds/.

[3] Living with your implantable cardioverter defibrillator (ICD).
http://www.heart.org/HEARTORG/Conditions/Arrhythmia/

PreventionTreatmentofArrhythmia/

Living-With-Your-Implantable-Cardioverter-Defibrillator-ICD
UCM 448462 Article.jsp.

[4] Open source ECG analysis software.
http://www.eplimited.com/confirmation.htm.

[5] Journal of Automated Reasoning, 30(3-4), 2003.

[6] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core
calculus of dependency. In Proceedings of the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’99, pages 147–160, New
York, NY, USA, 1999. ACM.

[7] A. W. Appel. Foundational proof-carrying code. In
Proceedings of the 16th Annual IEEE Symposium on Logic in
Computer Science, LICS ’01, pages 247–, Washington, DC,
USA, 2001. IEEE Computer Society.

[8] A. W. Appel. Verified software toolchain. In Proceedings of
the 20th European Conference on Programming Languages
and Systems: Part of the Joint European Conferences on
Theory and Practice of Software, ESOP’11/ETAPS’11, pages
1–17, Berlin, Heidelberg, 2011. Springer-Verlag.

[9] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and
K. R. M. Leino. Boogie: A modular reusable verifier for
object-oriented programs. In Proceedings of the 4th
International Conference on Formal Methods for
Components and Objects, FMCO’05, pages 364–387, Berlin,
Heidelberg, 2006. Springer-Verlag.

[10] R. S. Boyer and Y. Yu. Automated correctness proofs of
machine code programs for a commercial microprocessor. In
Proceedings of the 11th International Conference on
Automated Deduction: Automated Deduction, CADE-11,
pages 416–430, London, UK, UK, 1992. Springer-Verlag.

[11] T. Chen, M. Diciolla, M. Kwiatkowska, and A. Mereacre.
Quantitative verification of implantable cardiac pacemakers.
In Real-Time Systems Symposium (RTSS), 2012 IEEE 33rd,
pages 263–272. IEEE, 2012.

[12] A. Chlipala. A verified compiler for an impure functional
language. In ACM Sigplan Notices, volume 45, pages
93–106. ACM, 2010.

[13] A. Chlipala. Mostly-automated verification of low-level
programs in computational separation logic. In Proceedings
of the 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, pages
234–245, New York, NY, USA, 2011. ACM.

[14] T. J. Clarke, P. J. Gladstone, C. D. MacLean, and A. C.
Norman. Skim - the s, k, i reduction machine. In
Proceedings of the 1980 ACM Conference on LISP and
Functional Programming, LFP ’80, pages 128–135, New
York, NY, USA, 1980. ACM.

[15] S. J. Connolly, M. Gent, R. S. Roberts, P. Dorian, D. Roy,
R. S. Sheldon, L. B. Mitchell, M. S. Green, G. J. Klein, and
B. O’Brien. Canadian implantable defibrillator study (cids).
Circulation, 101(11):1297–1302, 2000.

[16] M. E. Conway. Design of a separable transition-diagram
compiler. Commun. ACM, 6(7):396–408, July 1963.

[17] L. C. Cordeiro, B. Fischer, H. Chen, and J. Marques-Silva.
Semiformal verification of embedded software in medical
devices considering stringent hardware constraints. In
ICESS, 2009.

[18] M. M. Cruz-Cunha, J. Varaj£o, H. Krcmar, R. Martinho,
R. A. lvarez, A. J. M. Penn, and X. A. V. Sobrino. Centeris
2013 - conference on enterprise information systems /

projman 2013 - international conference on project
management/ hcist 2013 - international conference on health
and social care information systems and technologies a
comparison of three qrs detection algorithms over a public
database. Procedia Technology, 9:1159 – 1165, 2013.

[19] P. Curzon and P. Curzon. A verified compiler for a structured
assembly language. In In proceedings of the 1991
international workshop on the HOL theorem Proving System
and its applications. IEEE Computer, 1991.

[20] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. Commun. ACM, 20(7):504–513,
July 1977.

[21] T. Denning, K. Fu, and T. Kohno. Absence makes the heart
grow fonder: New directions for implantable medical device
security. In HotSec, 2008.

[22] L. P. Deutsch. A lisp machine with very compact programs.
In Proceedings of the 3rd international joint conference on
Artificial intelligence, pages 697–703. Morgan Kaufmann
Publishers Inc., 1973.

[23] A. Fox and M. O. Myreen. A trustworthy monadic
formalization of the armv7 instruction set architecture. In
Proceedings of the First International Conference on
Interactive Theorem Proving, ITP’10, pages 243–258, Berlin,
Heidelberg, 2010. Springer-Verlag.

[24] J. A. Goguen and J. Meseguer. Security policies and security
models. In Security and Privacy, 1982 IEEE Symposium on,
pages 11–11, April 1982.

[25] S. Gollakota, H. Hassanieh, B. Ransford, D. Katabi, and
K. Fu. They can hear your heartbeats: non-invasive security
for implantable medical devices. In Proc. ACM Conf.
SIGCOMM, pages 2–13, 2011.

[26] A. O. Gomes and M. V. M. Oliveira. Formal Specification of
a Cardiac Pacing System, pages 692–707. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[27] B. Graham. Secd: Design issues. Technical report,
University of Calgary, 1989.

[28] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark,
B. Defend, W. Morgan, K. Fu, T. Kohno, and W. H. Maisel.
Pacemakers and implantable cardiac defibrillators: Software
radio attacks and zero-power defenses. In 2008 IEEE
Symposium on Security and Privacy (sp 2008), pages
129–142. IEEE, 2008.

[29] B. Hardekopf and C. Lin. Flow-sensitive pointer analysis for
millions of lines of code. In Proceedings of the 9th Annual
IEEE/ACM International Symposium on Code Generation
and Optimization, CGO ’11, pages 289–298, Washington,
DC, USA, 2011. IEEE Computer Society.

[30] N. Heintze and J. G. Riecke. The slam calculus:
Programming with secrecy and integrity. In Proceedings of

the 25th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’98, pages 365–377, New
York, NY, USA, 1998. ACM.

[31] R. Hindley. The principal type-scheme of an object in
combinatory logic. Transactions of the American
Mathematical Society, 146:29–60, 1969.

[32] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler. A
history of haskell: being lazy with class. In Proceedings of
the third ACM SIGPLAN conference on History of
programming languages, pages 12–1. ACM, 2007.

[33] W. A. Hunt Jr. Microprocessor design verification. Journal
of Automated Reasoning, 5(4):429–460, 1989.

[34] Z. Jiang, M. Pajic, and R. Mangharam. Cyber-physical
modeling of implantable cardiac medical devices.
Proceedings of the IEEE, 100(1):122–137, Jan 2012.

[35] V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing- and
termination-sensitive secure information flow: Exploring a
new approach. In 2011 IEEE Symposium on Security and
Privacy, pages 413–428, May 2011.

[36] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. Nohype:
Virtualized cloud infrastructure without the virtualization.
SIGARCH Comput. Archit. News, 38(3):350–361, June 2010.

[37] A. Kennedy, N. Benton, J. B. Jensen, and P.-E. Dagand. Coq:
The world’s best macro assembler? In Proceedings of the
15th Symposium on Principles and Practice of Declarative
Programming, PPDP ’13, pages 13–24, New York, NY, USA,
2013. ACM.

[38] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,
M. Norrish, et al. sel4: Formal verification of an os kernel. In
Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 207–220. ACM, 2009.

[39] T. F. Knight. Implementation of a list processing machine.
PhD thesis, Massachusetts Institute of Technology, 1979.

[40] P. M. Kogge. ”The Architecture of Symbolic Computers”.
McGraw-Hill, Inc., New York, New York, 1991.

[41] P. J. Landin. The Mechanical Evaluation of Expressions. The
Computer Journal, 6(4):308–320, Jan. 1964.

[42] X. Leroy. A formally verified compiler back-end. Journal of
Automated Reasoning, 43(4):363–446, 2009.

[43] T. Maeda and A. Yonezawa. Typed assembly language for
implementing os kernels in smp/multi-core environments
with interrupts. In Proceedings of the 5th International
Conference on Systems Software Verification, SSV’10, pages
1–1, Berkeley, CA, USA, 2010. USENIX Association.

[44] R. Mangharam, H. Abbas, M. Behl, K. Jang, M. Pajic, and
Z. Jiang. Three challenges in cyber-physical systems. In
2016 8th International Conference on Communication
Systems and Networks (COMSNETS), pages 1–8, Jan 2016.

[45] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An execution infrastructure for tcb
minimization. SIGOPS Oper. Syst. Rev., 42(4):315–328, Apr.
2008.

[46] N. G. Michael and A. W. Appel. Machine instruction syntax
and semantics in higher order logic. In Proceedings of the

17th International Conference on Automated Deduction,
CADE-17, pages 7–24, London, UK, UK, 2000.
Springer-Verlag.

[47] R. Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17:348–375,
1978.

[48] E. Moggi. Notions of computation and monads. Information
and computation, 93(1):55–92, 1991.

[49] J. S. Moore. A mechanically verified language
implementation. Journal of Automated Reasoning,
5(4):461–492, 1989.

[50] A. L. D. Moura and R. Ierusalimschy. Revisiting coroutines.
ACM Trans. Program. Lang. Syst., 31(2):6:1–6:31, Feb. 2009.

[51] G. C. Necula. Translation validation for an optimizing
compiler. In ACM sigplan notices, volume 35, pages 83–94.
ACM, 2000.

[52] G. C. Necula. Proof-carrying code. design and
implementation. Springer, 2002.

[53] G. Neis, C.-K. Hur, J.-O. Kaiser, C. McLaughlin, D. Dreyer,
and V. Vafeiadis. Pilsner: A compositionally verified
compiler for a higher-order imperative language. In
Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015, pages
166–178, New York, NY, USA, 2015. ACM.

[54] J. Pan and W. J. Tompkins. A real-time qrs detection
algorithm. IEEE Transactions on Biomedical Engineering,
BME-32(3):230–236, March 1985.

[55] F. Pottier and V. Simonet. Information flow inference for ml.
ACM Trans. Program. Lang. Syst., 25(1):117–158, Jan. 2003.

[56] T. Ramananandro, Z. Shao, S.-C. Weng, J. Koenig, and Y. Fu.
A compositional semantics for verified separate compilation
and linking. In Proceedings of the 2015 Conference on
Certified Programs and Proofs, CPP ’15, pages 3–14, New
York, NY, USA, 2015. ACM.

[57] J. M. Rushby. Proof of separability: A verification technique
for a class of a security kernels. In Proceedings of the 5th
Colloquium on International Symposium on Programming,
pages 352–367, London, UK, UK, 1982. Springer-Verlag.

[58] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE J.Sel. A. Commun.,
21(1):5–19, Sept. 2006.

[59] S. Shuja, S. K. Srinivasan, S. Jabeen, and D. Nawarathna. A
formal verification methodology for ddd mode pacemaker
control programs. Journal of Electrical and Computer
Engineering, 2015.

[60] J. Siebels, K.-H. Kuck, and C. Investigators. Implantable
cardioverter defibrillator compared with antiarrhythmic drug
treatment in cardiac arrest survivors (the cardiac arrest study
hamburg). American Heart Journal, 127:1139–1144, April
1994.

[61] V. Simonet. Fine-grained information flow analysis for a λ
calculus with sum types. In Proceedings of the 15th IEEE
Workshop on Computer Security Foundations, CSFW ’02,
pages 223–, Washington, DC, USA, 2002. IEEE Computer
Society.

[62] M. Strecker. Formal verification of a java compiler in
isabelle. In Automated DeductionCADE-18, pages 63–77.
Springer, 2002.

[63] D. Terei, S. Marlow, S. Peyton Jones, and D. Mazières. Safe
haskell. In Proceedings of the 2012 Haskell Symposium,
Haskell ’12, pages 137–148, New York, NY, USA, 2012.
ACM.

[64] H. Tuch, G. Klein, and M. Norrish. Types, bytes, and
separation logic. In Martin Hofmann and Matthias Felleisen,
editor, ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 97–108, Nice, France, jan
2007. ACM.

[65] T. A. versus Implantable Defibrillators (AVID) Investigators.
A comparison of antiarrhythmic-drug therapy with
implantable defibrillators in patients resuscitated from
near-fatal ventricular arrhythmias. New England Journal of
Medicine, 337(22):1576–1584, 1997. PMID: 9411221.

[66] D. Volpano, C. Irvine, and G. Smith. A sound type system
for secure flow analysis. J. Comput. Secur., 4(2-3):167–187,
Jan. 1996.

[67] M. S. Wathen, P. J. DeGroot, M. O. Sweeney, A. J. Stark,
M. F. Otterness, W. O. Adkisson, R. C. Canby, K. Khalighi,
C. Machado, D. S. Rubenstein, and K. J. Volosin.
Prospective randomized multicenter trial of empirical
antitachycardia pacing versus shocks for spontaneous rapid
ventricular tachycardia in patients with implantable
cardioverter-defibrillators. Circulation, 110(17):2591–2596,
2004.

[68] H. Xi and R. Harper. A dependently typed assembly
language. In ACM SIGPLAN Notices, volume 36, pages
169–180. ACM, 2001.

[69] J. Yang and C. Hawblitzel. Safe to the last instruction:
Automated verification of a type-safe operating system. In
Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
’10, pages 99–110, New York, NY, USA, 2010. ACM.

[70] D. Yu, N. A. Hamid, and Z. Shao. Building certified libraries
for pcc: dynamic storage allocation. In Proceedings of the
12th European conference on Programming, pages 363–379.
Springer-Verlag, 2003.

