Fixpoint Reuse for Incremental JavaScript Analysis

Lawton Nichols
University of California,
Santa Barbara
Santa Barbara, USA
lawtonnichols@cs.ucsb.edu

Abstract

Frequently updated programs cause the cost of static analysis
to be multiplied by the number of program versions. When
the baseline cost is high (for example, analyzing JavaScript),
this multiplicative factor can be prohibitive. As an example,
JavaScript-based browser addons are continually updated
and there are known instances where malicious code has
been injected into such updates; thus the addons must be
repeatedly vetted each time an update happens.
Incremental analysis reduces this cuamulative cost by reusing

analysis results of previous versions to reduce the cost of an-
alyzing an updated version. However, existing incremental
analyses are not applicable to dynamic programming lan-
guages such as JavaScript because they make assumptions
that don’t hold in this setting. In this paper, we propose the
first incremental static analysis for JavaScript. We do not re-
quire perfect precision, but we show empirically that there is
negligible precision loss in practice. Our technique includes
a method for matching code between JavaScript program
versions, a non-trivial problem which existing techniques
do not solve. For our benchmarks, drawn from real browser
addons and node.js programs, our incremental analysis per-
formance is on average within a factor of two of an optimal
incremental analysis.

CCS Concepts + Theory of computation — Program
analysis; « Software and its engineering — Reusabil-
ity; General programming languages.

Keywords incremental program analysis, javascript analy-
sis

ACM Reference Format:

Lawton Nichols, Mehmet Emre, and Ben Hardekopf. 2019. Fix-

point Reuse for Incremental JavaScript Analysis. In Proceedings
of the 8th ACM SIGPLAN International Workshop on the State Of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SOAP ’19, June 22, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6720-2/19/06...$15.00
https://doi.org/10.1145/3315568.3329964

Mehmet Emre
University of California,
Santa Barbara
Santa Barbara, USA
emre@cs.ucsb.edu

Ben Hardekopf
University of California,
Santa Barbara
Santa Barbara, USA
benh@cs.ucsb.edu

the Art in Program Analysis (SOAP °19), June 22, 2019, Phoenix, AZ,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3315568.3329964

1 Introduction

JavaScript programs are an integral part of the internet
ecosystem, from the server to the client, and present a tempt-
ing target for malicious actors. For example, JavaScript-based
browser addons have complete access to the browser’s state
and can do anything they want with that information, in-
cluding collecting and disseminating users’ sensitive data;
examples of such behavior have been found in the wild [6, 8].
Thus, JavaScript is an important target for static analyses
that attempt to ensure safety and security. Numerous such
analyses have been published, e.g., to ensure that browser
addons do not leak sensitive information [21, 36, 37].

However, a single-time static analysis is not sufficient
when programs are continually updated with new versions
(as is the case with browser addons). There are known in-
stances where malicious code has been snuck into existing
JavaScript programs during such updates [3]. Thus, static
analyses must be run on every version of a program, not just
the first one. However, JavaScript is a highly dynamic and
difficult to analyze language, and the resource cost can be
high. If there is a central entity serving as the main gateway
for these programs (e.g., browser addon repositories) that
is responsible for running all of these analyses, they must
shoulder the bulk of this cost. Being forced to re-run the
analyses for every new program version only exacerbates
these problems.

The contribution of this paper is a technique called
fixpoint reuse to mitigate the performance problems
attendant on repeatedly statically analyzing the same
JavaScript program over multiple versions.

Our technique falls under the general rubric of incremen-
tal static analysis, a topic that has been extensively studied
over the years. However, no existing work deals with a dy-
namic language such as JavaScript. In particular, the existing
work generally relies on two major assumptions: (1) an a
priori known flow-graph model of the program; and (2) a
known mapping between the old and new program versions.
Unfortunately, JavaScript programs do not have a simple
flow-graph model and require expensive static analysis to
compute precise control-flow and data-flow information. In
addition, previous works assume that the mapping between

https://doi.org/10.1145/3315568.3329964
https://doi.org/10.1145/3315568.3329964
https://doi.org/10.1145/3315568.3329964

SOAP 19, June 22, 2019, Phoenix, AZ, USA

versions is given as input to the analysis (without describ-
ing how it is computed) or that the mapping is trivially
computable from the known flow-graph (which JavaScript
doesn’t have). Thus, the existing works” assumptions do not
hold and those techniques are not immediately applicable to
languages such as JavaScript.

We rely on two key insights to reposition incremental
static analysis for JavaScript: (1) the problem of matching
between two program versions is similar to the problem of
clone-detection, and thus we can leverage existing clone-
detection techniques [13, 20, 33]; and (2) whereas modern
incremental analyses are precise (i.e., yield the same answer
as a non-incremental analysis), we can relax the requirement
for precision while still getting useful results. That is, our
incremental analysis can yield additional false positives be-
yond what a from-scratch analysis would yield, but we show
empirically that this does not happen very often. Together,
these insights enable our technique to achieve speedups
within 2x of an optimal incremental analysis, which we de-
fine as an incremental analysis between identical program
versions, thus allowing maximum reuse.

In the context of a central gateway such as a browser
addon repository that is analyzing third-party programs,
another benefit of our technique is that it does not rely on
the gateway having to store past analysis results for every
program that it analyzes. Analysis summaries of previous
versions can safely be left to the third-party developers to
store and transmit with any program updates; our technique
guarantees that the results of the analysis will still be sound.
The most that a malicious developer could do is to degrade
the performance and precision of the incremental analysis
up to some limit, after which we would fall back to a normal
from-scratch analysis. Our technique is flexible enough to
handle a variety of scenarios that distribute the analysis
work between the central authority and the app developer
in different ways, while still allowing the central authority
to guarantee the soundness of the results.

Although we implemented fixpoint reuse for analysis of
JavaScript, our technique is not Javascript-specific. Fixpoint
reuse can be used for building incremental analyses for other
dynamic languages where a priori, precise control-flow in-
formation is not available.

2 Related Work

In this section we review the work on incremental static
analysis to put our technique in context.

2.1 Incremental Analysis via Restarting Iteration

Perhaps the most closely related work to our technique is
from the early ’80s. There are three works that present a tech-
nique called restarting iteration [16—-18]. Unlike our fixpoint-
reuse work, restarting iteration assumes a known control-
flow graph and a provided mapping from old to new program

Lawton Nichols, Mehmet Emre, and Ben Hardekopf

version. Similarly to our fixpoint-reuse technique, the tech-
nique does not guarantee a precise incremental analysis, i.e.,
it could introduce additional false positives. The main con-
tributions of our work in relation to this old work are (1)
removing the assumption of a known, simple flow-graph,
thus making the technique applicable to dynamic languages
such as JavaScript; and (2) providing a method to compute
a mapping between program versions rather than assum-
ing one will be provided, thus making the technique more
practical.

2.2 Precise Incremental Analysis

Starting in the late *80s the work on restarting iteration was
abandoned in favor of techniques that guarantee precise
results—i.e., analyses that return the same results as a non-
incremental analysis. This flavor of incremental analysis has
dominated the field since that point [12, 14, 15, 19, 22, 23, 26—
30, 32, 34, 35]. Modern incremental analyses focus on prun-
ing old results that might negatively impact precision. There
have been a number of advancements, but all are for non-
dynamic languages with simple flow-graph program models
and assume that either the version mapping is provided or
can be trivially computed from the respective flow-graphs.
None of the precise incrementalization methods is immedi-
ately applicable to languages such as JavaScript.

2.3 “Incremental” Analysis of JavaScript

Livshits and Guarnieri [25] present Gulfstream for streaming
JavaScript programs. The word “incremental” is used in a
different context in that paper: the analysis is incremental in
the sense that it statically analyzes all JavaScript code that it
can, and then when dynamic processes load new JavaScript
files, those files are analyzed in an incremental fashion. The
paper presents a points-to analysis of JavaScript that is un-
sound and makes use of analysis result invalidation; whereas
our work maintains soundness, is a general abstract inter-
pretation, and does not invalidate any previous information.

3 Fixpoint Reuse Overview

In this section we describe the problem that we are solving
and the basic ideas of our approach, called fixpoint reuse.
We stay at a relatively high level, focusing on the central
concepts.

Problem Definition. The three inputs are Py, (the prior
version of the program), FP o, (the fixpoint analysis solution
for Ppyrior), and Pypg (the new version of the program). We
assume FPpyjo, is in the form of a map from program points
(potentially including calling context information) to abstract
states representing the solution at that point. Let FP,4 be
the fixpoint solution for a from-scratch analysis of P,,4. Our
goal is to compute FP@, an over-approximation of FP,.

Fixpoint Reuse for Incremental JavaScript Analysis

Method Overview. Our approach is to (1) compute a partial
mapping Pprior — Pypa from program points in Ppyior to pro-
gram points in P,,4 that correspond with high confidence,
then (2) use Pprior — Pupa to seed the initial analysis state
for FPu’pTi with the abstract states for corresponding program
points as given in FPpor. We then (3) analyze P,,q starting
from the seeded initial analysis state and ensure that we
visit every program point in P,,q at least once in order to
guarantee a sound analysis: because every transfer function
is monotone, and because we only ever increase the size of
the inputs to the transfer functions, our analysis results are
always an overapproximation of the from-scratch analysis
results.

Program Matching Challenges. Computing the map Ppior
Pypq can have extreme effects on the efficacy of the incremen-
tal analysis. Besides adding or removing statements between
versions, functions may have been renamed, allocation sites
may have been moved, and calling sequences may have been
modified. Thus matching between versions must include re-
naming calling contexts and abstract heap locations from
FPrior to the appropriate cognates in Pypy. When matching
there are three possibilities: (1) We correctly match, (2) we
incorrectly match, or (3) we cannot match.

The first case is the best case; the more correct matches
we compute the more effective the incremental analysis will
be in improving performance. The third case, while not ideal,
isn’t too harmful; the incremental analysis won’t benefit
from the prior analysis, but it can compute the information
in the same way as a from-scratch analysis.

The second case, however, is by far the worst case and
highlights the non-triviality of the matching problem. An
incorrect match means that the incremental analysis will be
seeded with incorrect information from the prior analysis.
While this incorrect information doesn’t affect the soundness
of the results, it does mean that the incremental analysis
must propagate this incorrect information to all reachable
program points, reducing performance and precision.

Thus, it is far better to fail to match a program point than
it is to incorrectly match a program point. Our matching
algorithm must carefully balance between matching often
and matching well. Failing to match often enough means that
we get no performance improvement; failing to match well
means that we get both performance and precision reduction.
We find that techniques borrowed from clone detection work
well because they provide a list of potential correspondances
with a measure of how close the correspondance is, allowing
us to tune the tradeoffs described above.

4 Fixpoint Reuse for SAFE

Our prototype implementation is built on top of SAFE ver-
sion 2.0. The SAFE JavaScript analysis framework [24] does

-

SOAP ’19, June 22, 2019, Phoenix, AZ, USA

not perform its analysis at the level of the original Java-
Script source code. Instead, the source is translated to a sim-
pler intermediate representation (IR) that is more amenable
to analysis—it breaks complicated expressions into simpler
ones, and makes explicit the implicit operations of the Java-
Script language (e.g., type coercion, argument array con-
struction before a function call, etc.). SAFE IR consists of
a list of functions, each of which consists of a list of basic
blocks (hereafter refered to as blocks), each of which consists
of a list of instructions.

In order to reuse analysis results, we must therefore create
a correspondence mapping between programs at the level
of SAFE’s IR. In the rest of this section, we describe our im-
plementation at a high level. A more detailed description
including specific matching algorithms can be found in the
accompanying tech report [31]. We focus on the program
matching aspect of our technique, as once a mapping be-
tween versions has been computed the actual analysis is
straightforward.

4.1 Program Matching

When we match JavaScript programs at the SAFE IR level,
we match functions, blocks, and instructions, in that order.
Once we are confident that two functions correspond, we
then match their blocks, and once we believe we have chosen
the best block correspondence we match individual instruc-
tions. Matching instructions is necessary for two main rea-
sons: (1) correctly translating calling contexts from FP ;o to
FP@ requires accurate mapping of call instructions, and (2)
correctly translating abstract heap addresses from FP,;o, to
FP@ requires accurate mapping of allocation instructions.
In both cases, failing to accurately match corresponding
program entities does not cause unsoundness but results in
imprecision and will cause the analysis to visit unnecessary
program locations and heap addresses. Thus matching with
high confidence is crucial for our method’s accuracy and
efficiency.

4.2 Function Matching

Our function matching algorithm is based on an edit-distance
calculation. The algorithm is parameterized by a function
CRITERIA that computes the distance between pairs of func-
tions as a numerical score. We consider two functions to
“match” when the criteria is below a certain threshold. We
instantiated CrRITERIA with different choices in order to eval-
uate which combination of distance criteria worked best—for
functions, for example, this critera consists of comparing
line numbers, function IDs, instruction counts, and identifier
usage. Given the distances, the algorithm matches those
functions with the best distance score that is under our
empirically-calculated threshold.

SOAP 19, June 22, 2019, Phoenix, AZ, USA

Table 1. Open-Source Benchmarks. For every sequence of
benchmark versions (e.g., [A, B, C]), we compare the closest
pairs (i.e., (A, B) and (B, C)).

Benchmark Name Version A Lines Version B Diff Distance
chess1 [2] 0.1.0.1 283 0.1.1.2 127+/116- 44
chess2 0.1.1.2 295 0.1.1.3 40+/10— 69
emoji-helper1 [5] 1.1.0 579 1.1.1 17+/3- 24
emoji-helper2 1.1.1 594 1.2.0 15+/1- 10
simple-translate [9] 2017.09.25 301 2017.10.14 2+/2- 0
k-cup-deals [7] 1.2 499 1.3 12+/0- 63
dateformat1 [4] 2011.03.13 166 2012.11.08 49+/7- 22
dateformat2 2012.11.08 208 2013.03.11 15+/8- 6
dateformat3 2013.03.11 216 2014.11.28 201+/55- 44
dateformat4 2014.11.28 261 2017.09.18 11+/6— 10
yallist1 [11] 2015.12.19 585 2017.03.11 24+/16- 8
yallist2 2017.03.11 594 2017.03.13 9+/0- 8
yallist3 2017.03.13 602 2017.04.25 2+/0- 0
balanced-match [1] 0.4.2 193 1.0.0 93+/102- 161
url-join1 [10] 2.0.0 149 2.0.1 1+/1- 0
url-join2 2.0.1 149 2.0.2 1+/1- 0

4.3 Block and Instruction Matching

Blocks are also matched using a similar edit distance cal-
culation. Instructions are matched based on the type of the
instruction, the number of allocation sites appearing in the
instruction, and the names of the variables involved (modulo
generated numerical suffixes).

5 Evaluation

In this section we evaluate the efficacy of fixpoint reuse in
terms of performance and precision. Because we are guaran-
teeing the soundness of the incremental analysis, we must at
a minimum visit every program point in the updated version
at least once. Thus, the potential for speedup lies in reducing
the number of times the analysis has to revisit a program
point before convergence. The quality of the program match-
ing between versions will play a large role.

We want to study the efficacy of fixpoint reuse on ac-
tual programs from the wild. We take four JavaScript-based
browser addons and four Node.js programs along with be-
tween 1-4 updates for each program taken from available
public repositories. These benchmarks are described in Ta-
ble 1. We are limited in our benchmark selection by SAFE’s
capabilities—these benchmarks were chosen from a set of
smaller programs because SAFE can completely model their
code and analyze them using a reasonable amount of re-
sources. Following previous work on analyzing browser add-
ons [21], we edit the original code to provide stubs for built-in
browser functions, and we include some amount of driver
code to ensure that the analysis visits all interesting locations
in the source file. We manually selected sources and sinks
for each file.

The actual analysis that we perform on these benchmarks
is a taint analysis implemented using the SAFE JavaScript

Lawton Nichols, Mehmet Emre, and Ben Hardekopf

Table 2. Handmade Benchmarks: Richards (v8 lines of code:
546)

Versions (A-B) Diff Distance

v0-v8 30+/2— 64
v1-v8 28+/2— 60
v2-v8 23+/2- 51
v3-v8 21+/2- 43
v4-v38 19+/1- 38
v5-v8 13+/0—- 33
v6—-v8 11+/0- 27
v7-v8 8+/0— 16

analysis infrastructure, suitably modified to implement fix-
point reuse. The implementation is available online.! We use
the taint results to measure the precision of the incremental
analysis versus a from-scratch analysis.

To help calibrate expectations, we start with a limits study
to determine the maximum speedup the incremental anal-
ysis could possibly get. We accomplish this by running the
incremental analysis on “updated” benchmark versions that
are exactly the same as the original, thus ensuring a perfect
program match and minimal revisiting of program points.
The results are in Section 5.1.

Another factor that comes into play is how different the
original and updated programs are. In the extreme, the up-
dated program could be completely different from the origi-
nal and not benefit from incremental analysis at all. To help
understand the effect of program “distance”, we have created
a set of handmade benchmarks and a series of successively
more “distant” updates for each benchmark, allowing us to
study the effects of program distance in a controlled manner.
The results are in Section 5.2.

Finally, we compare the speedups that we achieve on the
actual updated program versions to determine how close to
the optimal results we are.

5.1 Limits Study

For our limits study we take each program version of each
benchmark and run an incremental analysis on itself—in
other words, we take the from-scratch analysis and apply
fixpoint reuse to exactly the same program. This is the ideal
case for reuse and provides the maximum benefit. Because
we have a perfect program match, the only cost in the in-
cremental case is for visiting each program point exactly
once. We run three different experiments varying context-
sensitivity from 0-CFA to 2-CFA; a “program point” for a
context-sensitive analysis includes the context. The results
are not shown for space reasons, but the speedups observed
were from 1.12X to 14.46X.

1Our implementation is located at http://www.cs.ucsb.edu/~pllab under
the “Downloads” link.

http://www.cs.ucsb.edu/~pllab

Fixpoint Reuse for Incremental JavaScript Analysis

Speedup, Richards

12

10

o ©
x 8 %
S
° 6 S o—0® °
@ °
g ° .
» o4 L AP] .: .. o2 ° °
° ° ° P
°
2 D
0
0 10 20 30 40 50 60 70

Aggregate Block Distance

Figure 1. Handmade Results: Richards

5.2 Controlled Distance Study

Table 2 contains information on one of our handmade bench-
marks: it is the v8 Richards benchmark with statements
deleted. We also tested with the v8 Navier-Stokes bench-
mark (not shown for lack of space); the results are similar.
We made random (but attempted to avoid program-breaking)
deletions—these files are then “played backwards” to appear
as a sequence of code additions. Thus, successive versions
contain greater and greater differences to the original ver-
sion.

Our distance metric is derived from our program matching
algorithm. Given two programs A and B, we compute the set
of matching function pairs and, for each pair, we compute
the block edit distance. The sum of the block edit distances
over all matching function pairs is our measure of distance
between A and B. We investigated several other possible
distance metrics and found that they all behaved similarly.

We chose this methodology because additions seem to
be the most common updates to code: in our real-world,
open-source benchmarks, each commit contains over 4x the
number of additions to deletions on average. Of the four
outliers, only one was a legitimate case of refactoring; others
were superficial changes regarding whitespace or test suite
configuration, and so these diffs were exaggerating the truth.

Figure 1 shows the results of Richards handmade bench-
mark. We ran every combination of version pairs that re-
spected the order, e.g., v1~v2, v1~v3, v1~v4, v2~v3, v2~v4,
v3~v4, etc. We grouped each pair of programs based on their
distance score. These 1CFA analysis results paint a picture
of how program additions impact reuse.

The Richards benchmark consists of several small functions—

for the original benchmark, the fixpoint took 9,081 iterations
to converge, there were 494 unique program points visited,
and there were 3 loops. The chosen taints were calculated
precisely for all version pairs.

5.3 Real-World Evaluation

We run the real-world version updates at three context-
sensitivity levels. The time it takes to perform the program

SOAP ’19, June 22, 2019, Phoenix, AZ, USA

matching process on a given version pair is the same for
every context sensitivity level; they are all quite small (under
5s, with the majority around 1s). For the longer-running
analyses this number is negligible.

5.3.1 Incremental Results

We compare our method to a baseline of running the static
analysis on the updated version of each benchmark from
scratch (i.e., with fixpoint reuse turned off).

Table 3 shows the results of reuse for each different context
sensitivity level. We find that all taints are carried over with
very little imprecision. The dateformat benchmark is the only
case with imprecise taints, and this is due to the modeling of
a JavaScript built-in object that causes the analysis to return
the Ta44r address (i.e., the abstract address corresponding
to all concrete addresses). Because the heap is prepopulated
with extra information, there are more locations to point to
than in the from-scratch case.

All in all, while maintaining soundness and high preci-
sion in a proof-of-concept taint analysis, our fixpoint reuse
method allows us to more than double the speed of an anal-
ysis on average for real-world programs.

For another perspective, Table 4 shows our speedup rela-
tive to our best possible incremental analysis results (i.e., the
observed speedup divided by the optimal speedup). These re-
sults provide another means of observing program difference:
the version pairs with the fewest differences have either an
optimal or close-to-optimal speedup. On average, our reuse
method is within a factor of two of the optimal speedup for
these benchmarks, and we believe this is representative of
the general case.

6 Conclusion and Future Work

We have presented fixpoint reuse, a method for incremental
program analysis that reuses fixpoint analysis solutions from
one version of a program to accelerate the analysis of an
updated version of the same program by matching program
points between the two versions. We have applied fixpoint
reuse to JavaScript analysis and shown that we get good
results on real-world JavaScript programs.

The maximum performance improvement that our tech-
nique can provide is limited by the necessity to visit every
program point at least once during the incremental analysis.
As future work, it would be interesting to investigate tech-
niques to skip visiting program points that are unlikely to
have changed while still guaranteeing a high probability of
soundness; doing so could potentially increase the perfor-
mance improvement of incremental analysis even further.

Acknowledgments
This work was supported by NSF grant CCF-1319060.

SOAP 19, June 22, 2019, Phoenix, AZ, USA Lawton Nichols, Mehmet Emre, and Ben Hardekopf

Table 3. Results relative to from-scratch analysis. Tainted sink state counts
in black were the same as the baseline counts, while counts in red exhibited
imprecision and had one extra tainted sink.

Table 4. Speedup results relative to a perfect
incremental analysis, i.e., how close did we
come to optimal speedup.

Benchmark 0CFA . 1CFA . 2CFA . Benchmark 0CFA 1CFA 2CFA
Speedup Taints Speedup Taints Speedup Taints
chess1 0.20 031 034
chess1 1.28 3 1.01 3 0.97 5
chess2 0.17 019 027
chess2 1.61 3 1.08 3 0.97 4 ..

" emoji-helper1 0.59 053 0.60
emoji-helper1 4.70 1 4.35 1 3.40 1 .

o emoji-helper2 0.77 078 0.86
emoji-helper2 7.07 1 7.37 1 4.87 1 .

. simple-translate ~ 0.99 0.98 1.00
simple-translate 3.14 1 4.15 1 2.63 2
k-cup-deals 0.37 047 0.83
k-cup-deals 4.32 1 1.46 1 0.93 1
dateformat1 034 026 030
dateformat1 1.47 4 1.02 8 0.90 8
dateformat2 0.54 041 046
dateformat2 2.59 4 1.60 8 1.44 8
dateformat3 054 031 0438
dateformat3 2.19 4 0.90 8 0.91 8
dateformat4 1.00 0.82 0.76
dateformat4 4.13 4 2.26 8 1.48 8 .

. yallist1 0.12 0.08 0.09
yallist1 1.18 7 1.03 60 1.07 60 .

. yalhstz 0.15 0.11 0.14
yalhstZ 1.23 7 1.42 60 1.48 60 allist3 0.99 1.00 1.00
yallist3 9.36 7 14.41 60 13.16 60 galanced match 0'11 0~O8 0'07
balanced-match 0.88 20 0.97 420 1.02 420 .. ’ ’ '

. url-join1 0.96 090 1.00
url-join1 4.23 2 2.56 17 3.93 17 url-ioin2 0.91 089 0.93
url-join2 4.27 2 2.60 17 3.99 17) : : :

Average: 0.55 0.51 0.57
Average: 3.35 3.01 2.70 g
References [21] Kashyap, V., Hardekopf, B.: Security signature inference for javascript-based

browser addons. In: CGO. p. 219. ACM (2014)
[22] Krall, A., Berger, T.: Incremental flow analysis (1994)
[23] Kulkarni, S., Mangal, R., Zhang, X., Naik, M.: Accelerating program analyses by
cross-program training. In: OOPSLA 2016. pp. 359-377. ACM (2016)
[24] Lee, H., Won, S., Jin, J., Cho, J., Ryu, S.: Safe: Formal specification and imple-
mentation of a scalable analysis framework for ecmascript. In: FOOL 2012. p. 96
(2012)
Livshits, B., Guarnieri, S.: Gulfstream: Incremental static analysis for streaming
javascript applications. Tech. rep., Microsoft Research (January 2010)
Logozzo, F., Lahiri, S.K., Fahndrich, M., Blackshear, S.: Verification modulo ver-
sions: Towards usable verification. In: PLDI *14. pp. 294-304 (2014)
[27] Lu, Y., Shang, L., Xie, X., Xue, J.: An Incremental Points-to Analysis with CFL-
Reachability, pp. 61-81. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)
Marlowe, TJ., Ryder, B.G.: An efficient hybrid algorithm for incremental data
flow analysis. In: POPL ’90. pp. 184-196 (1990)
[29] McPeak, S., Gros, C.H., Ramanathan, M.K.: Scalable and incremental software
bug detection. In: FSE 2013. pp. 554-564 (2013)
[30] Mudduluru, R., Ramanathan, M.K.: Efficient Incremental Static Analysis Using
Path Abstraction, pp. 125-139. Springer Berlin Heidelberg, Berlin, Heidelberg

[1] balanced-match. https://github.com/juliangruber/balanced-match (2017)

[2] chess. https://bitbucket.org/rsb/chesscomnotifier/overview (2017)

[3] Chrome extension developers under a barrage of phishing attacks.

https://tech.slashdot.org/story/17/08/11/221203/chrome-extension-

developers-under-a-barrage-of-phishing-attacks (2017)

] dateformat. https://github.com/felixge/node-dateformat (2017)

[5] emoji-helper. https://github.com/johannhof/emoji-helper/blob/master/src/
popup.js (2017)

[6] Google removes chrome extension used in banking fraud (2017),
https://threatpost.com/google-removes-chrome-extension-used-in-banking-
fraud/127469/

[7] k-cup-deals. https://addons.mozilla.org/en-US/firefox/addon/keurig-k-cup-

deals/versions/ (2017)

Malicious chrome extensions steal passwords & cpu power. https://duo.com/

decipher/malicious-chrome-extensions-steal-passwords-and-cpu (2017)

[9] simple-translate. https://github.com/sienori/simple-translate/blob/master/
simple-translate/background.js (2017)

[10] wurl-join. https://github.com/jfromaniello/url-join (2017)

&
i

IS
2

)
=
&

[11] yallist. https://github.com/isaacs/yallist/blob/master/test/basic.js (2017)

[12] Arzt, S., Bodden, E.: Reviser: Efficiently updating ide-/ifds-based data-flow anal- (2914) L . . .
yses in response to incremental program changes. In: ICSE 2014. pp. 288298 [31] Nichols, L., Emre, M., Hardekopf, B.: Fixpoint reuse for incremental javascript
(2014) analysis. Tech. Rep. 2019-02, University of California, Santa Barbara (March

2019), https://cs.ucsb.edu/research/tech-reports/2019-02

Pollock, L.L., Soffa, M.L.: An incremental version of iterative data flow analysis.
IEEE Transactions on Software Engineering 15(12), 1537-1549 (1989)

Rattan, D., Bhatia, R., Singh, M.: Software clone detection: A systematic review.
Information and Software Technology 55(7), 1165 — 1199 (2013)

Souter, A.L., Pollock, L.L.: Incremental call graph reanalysis for object-oriented
software maintenance. In: Proceedings IEEE International Conference on Soft-
ware Maintenance. ICSM 2001. pp. 682-691 (2001)

Szabo, T., Erdweg, S., Voelter, M.: Inca: A dsl for the definition of incremental pro-
gram analyses. In: Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering. pp. 320-331. ACM (2016)

Taly, A., Mitchell, J.C., Miller, M.S., Nagra, J., et al.: Automated analysis of
security-critical javascript apis. In: 2011 IEEE Symposium on Security and Pri-
vacy. pp. 363-378. IEEE (2011)

Tripp, O., Ferrara, P., Pistoia, M.: Hybrid security analysis of web javascript code
via dynamic partial evaluation. In: Proceedings of the 2014 International Sym-
posium on Software Testing and Analysis. pp. 49-59. ACM (2014)

[13] Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E.: Comparison and evalu-
ation of clone detection tools. IEEE Transactions on software engineering 33(9)
(2007)

[14] Carroll, M.D., Ryder, B.G.: Incremental data flow analysis via dominator and

attribute update. In: POPL ’88. pp. 274-284. ACM (1988)

Conway, C.L., Namjoshi, K.S., Dams, D., Edwards, S.A.: Incremental algorithms

for inter-procedural analysis of safety properties. In: International Conference

on Computer Aided Verification. pp. 449-461. Springer (2005)

[16] Cooper, K.D., Kennedy, K.: Efficient computation of flow insensitive interproce-

dural summary information. In: Proceedings of the 1984 SIGPLAN Symposium

on Compiler Construction. pp. 247-258 (1984)

Cooper, KD.: Interprocedural Data Flow Analysis in a Programming Environ-

ment. Ph.D. thesis, Rice University, Houston, TX, USA (1983), aAI8314924

[18] Ghodssi, V.: Incremental analysis of programs. Ph.D. thesis, University of Cen-

tral Florida (1983) (37

Hermenegildo, M., Puebla, G., Marriott, K., Stuckey, P.J.: Incremental analysis of

constraint logic programs. ACM Transactions on Programming Languages and

Systems (TOPLAS) 22(2), 187-223 (2000)

[20] Kapravelos, A., Shoshitaishvili, Y., Cova, M., Kruegel, C., Vigna, G.: Revolver: An
automated approach to the detection of evasive web-based malware. In: USENIX
Security Symposium (2013)

S W
LN

=

&
&
=

'@
&

[36

(17

[19

https://github.com/juliangruber/balanced-match
https://bitbucket.org/rsb/chesscomnotifier/overview
https://tech.slashdot.org/story/17/08/11/221203/chrome-extension-developers-under-a-barrage-of-phishing-attacks
https://tech.slashdot.org/story/17/08/11/221203/chrome-extension-developers-under-a-barrage-of-phishing-attacks
https://github.com/felixge/node-dateformat
https://github.com/johannhof/emoji-helper/blob/master/src/popup.js
https://github.com/johannhof/emoji-helper/blob/master/src/popup.js
https://threatpost.com/google-removes-chrome-extension-used-in-banking-fraud/127469/
https://threatpost.com/google-removes-chrome-extension-used-in-banking-fraud/127469/
https://addons.mozilla.org/en-US/firefox/addon/keurig-k-cup-deals/versions/
https://addons.mozilla.org/en-US/firefox/addon/keurig-k-cup-deals/versions/
https://duo.com/decipher/malicious-chrome-extensions-steal-passwords-and-cpu
https://duo.com/decipher/malicious-chrome-extensions-steal-passwords-and-cpu
https://github.com/sienori/simple-translate/blob/master/simple-translate/background.js
https://github.com/sienori/simple-translate/blob/master/simple-translate/background.js
https://github.com/jfromaniello/url-join
https://github.com/isaacs/yallist/blob/master/test/basic.js
https://cs.ucsb.edu/research/tech-reports/2019-02

	Abstract
	1 Introduction
	2 Related Work
	2.1 Incremental Analysis via Restarting Iteration
	2.2 Precise Incremental Analysis
	2.3 ``Incremental'' Analysis of JavaScript

	3 Fixpoint Reuse Overview
	4 Fixpoint Reuse for SAFE
	4.1 Program Matching
	4.2 Function Matching
	4.3 Block and Instruction Matching

	5 Evaluation
	5.1 Limits Study
	5.2 Controlled Distance Study
	5.3 Real-World Evaluation

	6 Conclusion and Future Work
	References

