
Syntax-based Improvements to Plagiarism Detectors
and their Evaluations

Lawton Nichols
UC Santa Barbara

lawtonnichols@cs.ucsb.edu

Kyle Dewey
CSU Northridge

kyle.dewey@csun.edu

Mehmet Emre
UC Santa Barbara
emre@cs.ucsb.edu

Sitao Chen
UC Santa Barbara

sitaochen@ucsb.edu

Ben Hardekopf
UC Santa Barbara
benh@cs.ucsb.edu

ABSTRACT
Software plagiarism cheats students out of their own education and
leads to unfair grading, making software plagiarism detection an im-
portant problem. However, many popular plagiarism detection tools
are inaccurate, language-specific, or closed source, limiting their
applicability. In this work, we seek to address these problems via a
novel approach. We adapt the optimal Smith-Waterman sequence
alignment algorithm to precisely measure the similarity between
programs, greatly improving detection accuracy relative to com-
petitors. Our approach is applicable to any language describable by
an ANTLR grammar, which includes most programming languages.
We also provide a new type of evaluation based on random program
generation and obfuscation. Finally, we make our approach freely
available, allowing for customizations and transparent reasoning
about detection behavior.

ACM Reference Format:
Lawton Nichols, Kyle Dewey, Mehmet Emre, Sitao Chen, and Ben Hard-
ekopf. 2019. Syntax-based Improvements to Plagiarism Detectors and their
Evaluations. In Innovation and Technology in Computer Science Education
(ITiCSE ’19), July 15–17, 2019, Aberdeen, Scotland UK. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3304221.3319789

1 INTRODUCTION
Plagiarism cheats plagiarizers out of their own education, and
can lead to unfair grading of students who do not plagiarize. As
such, the detection of software plagiarism is an important prob-
lem. While there is a large existing body of work on plagiarism
detection (e.g., [4–6, 8, 10, 12, 14], we observe that plagiarism detec-
tion remains an unsolved problem. Specifically, existing plagiarism
detection approaches tend to be inaccurrate, language-specific, or
closed source [4], limiting their practicality.

Towards solving these problems, we observe the following:
• The syntax of most languages allows programs to differ in op-
erationally indistinguishable ways, as by varying whitespace

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE ’19, July 15–17, 2019, Aberdeen, Scotland UK
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6301-3/19/07. . . $15.00
https://doi.org/10.1145/3304221.3319789

or variable names. This sort of syntactic noise is frequently
exploited to obfuscate plagiarism [4].

• Most languages have features which are related to each other
(e.g., both if and switch perform conditional code execu-
tion). A common plagiarism obfuscation is to substitute these
features with each other [4].

• Many kinds of plagiarism obfuscations can be phrased as
code additions, deletions, or modifications.

In this work, we directly exploit these observations to inform the
design of a novel plagiarism detection approach. Towards remov-
ing superfluous syntactic information, we adopt a syntax-aware
approach with filtering refinements, which strip away anything
the user considers uninteresting. As a countermeasure to language
feature substitution, we define abstraction refinements, which al-
low the user to specify how similar different language features
are to each other. Finally, we observe that the Smith-Waterman
algorithm [13], classically from bioinformatics, is well-suited to
plagiarism detection; the algorithm was was specifically designed
to compare sequences in the presence of additions, deletions, and
modifications. The use of these refinements, in conjunction with
the Smith-Waterman algorithm, leads to a plagiarism detection
solution which is accurate by design.

While our approach is syntax-aware, it is not tied to the syntax of
any particular language. We use ANTLR [7] grammars for defining
program syntax, which are commonly used when defining language
parsers for compilers. Most languages can be defined with ANTLR
grammars, and many already have ANTLR grammars available,
making our approach applicable to most languages. While our
filtering and abstraction refinements require an additional time
investment to specify, this investment needs to be performed only
once per language, making the specification burden overall minute.

To evaluate the accurracy of our approach, we compare it against
multiple existing plagiarism detection approaches (namely, MOSS
[12], JPLAG [10], and Zhang and Liu [8]) on Java programs. While
designing our evaluation, we discovered that many evaluations are
based on simulated plagiarized programs written by the very au-
thors of the corresponding plagiarism detection technique (e.g., [3–
5, 8, 15]). We observe that subtle biases can be introduced with
this evaluation approach, as it is possible for an author to subcon-
sciously write programs which are more liable to be caught by their
own technique. To reduce such bias, we base our evaluation on
randomly-generated Java programs which have been automatically
obfuscated using plagiarism obfuscation approaches observed in
the wild (e.g., those in Martins et al. [4]). Our evaluation shows that

https://doi.org/10.1145/3304221.3319789
https://doi.org/10.1145/3304221.3319789

our approach is superior to that of all competing approaches, in
terms of true/false positives/negatives discovered.

Overall, our contributions are as follows:

• We introduce a novel syntax-aware plagiarism detection
approach.We explain our technique in Section 3, and provide
an example in Section 4.

• We introduce a new evaluation approach based on random
program generation and obfuscation, and use this evaluation
approach to evaluate our plagiarism detection approach. We
find that our plagiarism detection approach offers superior
accurracy to that of all competitors considered. Section 5
provides further details.

• Wemake our plagiarism detection and evaluation approaches,
along with their corresponding source code, freely available1.

2 BACKGROUND AND RELATEDWORK
Plagiarism is associated with malicious intent, and students who
plagiarize code will often obfuscate it to avoid detection [4]. Plagia-
rism detection tools (hereafter referred to as “detectors”) must see
through these obfuscations.

Similarity-based detectors give scores to all possible pairs of
programs, where higher-scoring pairs are more similar to each
other (and more indicative of plagiarism) than lower-scoring pairs.
Exactly what constitutes a “high score” is relative to the listing of
scores; in practice, instructors would look at the code corresponding
to some of the highest-scoring pairs, in order to make a judgement
call on whether or not plagiarism occurred. While this still requires
instructors to perform manual code inspection to find plagiarism,
it dramatically reduces the number of pairs to consider, going from
hundreds to thousands of pairs to perhaps several. With this in
mind, the purpose of detectors in practice is to eliminate unlikely
cases of plagiarism, leaving only likely cases.

2.1 Evaluating Plagiarism Detectors
Effective detectors will consistently give high scores to plagiarism
and low scores to non-plagiarism. This suggests an evaluation strat-
egy: see how a given detector scores known cases of plagiarism
and non-plagiarism, and measure how close these scores are to
expectations. Ideally, this evaluation would involve real student
assignment submissions, reflecting how detectors are intended to
be used. However using real submissions has a problem: students
must honestly tell us whether or not they plagiarized. Given the
negative consequences of plagiarism, along with the fact that plagia-
rism is intentionally obfuscated to avoid detection, students cannot
be relied upon to provide this information. As such, alternative
evaluation strategies are frequently used.

A common alternative strategy is to manually create benchmarks
which intentionally plagiarize code [3–5, 8, 15]. We argue that this
is prone to bias, as authors may subconsciously write benchmarks
which behave differently on their own detector. In contrast, we
generate random programs and randomly perturb them in a manner
consistent with plagiarism.

1https://github.com/lawtonnichols/plagiarism-detector

2.2 Related Work on Plagiarism Detection
Only two of the papers mentioned in a recent plagiarism detection
survey [4] are open source, and each lacks widespread language
support. We believe our approach fills this gap.

The most successful detector is MOSS [12], and we compare
our tool against it in our evaluation. The algorithm behind MOSS
(namely, Winnowing [12]) is freely available, though the MOSS
tool itself is closed source. While Winnowing is language-agnostic,
MOSS has language-specific modes, and setting these modes prop-
erly has dramatic impact on the results (see Section 5.3). As such,
MOSS’s approach is neither widely applicable nor freely available,
unlike our approach. MOSS, Nayayanan et al. [6], and Chilowicz et
al. [1] are all based on fingerprinting at various granularity levels,
with MOSS using files, Nayayanan et al. using token sequences,
and Chilowicz et al. using syntax trees.

JPLAG is a Java-specific detector which applies a string tiling
algorithm at the token level [10]. Son et al.’s [14] approach, like
ours, is based on comparing parse trees, though their comparison
is based on convolution kernels instead of sequence alignment.

Tahaei and Noelle [16] detect plagiarism by observing multiple
submissions of code and comparing the differences between those
submsisions via logistic regression. In contrast, our work does not
require multiple submissions of student programs. Their evaluation
was done on student code labeled by the instructor.

Fu et al. [2] use a version of the TF-IDF statistic to find the most
“surprising” differences on abstract syntax trees. Their evaluation
was on short programs, and cases of plagiarism were generated
from starter code using generators made by multiple people. This
evaluation is similar to our own, but the types of program transfor-
mations performed by the generators are unclear.

Prado et al. [9] introduce a detector which uses static and dy-
namic analyses to perform plagiarism detection, making it reliant
on existing tools and analyses for the languages that it supports.
In contrast, our method only requires an ANTLR grammar and
minimal work to add a new language.

Sulistiani and Karnalim [15] compare token sequences, filtering
them using cosine similarity for efficiency. We observe that token
sequences remove some of the underlying structure of a program,
and so our detector instead works with parse trees. Their evaluation
consists of handmade cases of plagiarism.

Zhang and Liu’s [8] approach is arguably the most similar to our
own, as they also make use of the Smith-Waterman algorithm [13].
However, Zhang and Liu’s approach has several key differences
from that of our own: to the best of our knowledge, they convert
trees to sequences via a preorder traversal instead of a postorder tra-
versal (Section 3.1), their scoring function is less general than that
of our own (Section 3.5), they do not perform sorting (Section 3.2),
and most importantly, they lack our filtering and abstraction re-
finements (see Section 3.3). For these reasons, we have found that
Zhang and Liu’s approach cannot detect plagiarism as accurately
as our proposed method, as our evaluation shows (Section 5.3).

3 OUR METHOD
Figure 1 provides a graphical view of our process. In the rest of this
section, we cover each part in more detail.

https://github.com/lawtonnichols/plagiarism-detector

a.java

Java.g4

b.java

Source files

ANTLR grammar
 Parse trees

Sorted,
linearized sequences

Preprocessed
sequences

Modified
Smith-Waterman

0.328

Normalized
similarity score

Figure 1: A graphical overview of our method.

3.1 Parsing: ANTLR Grammars to Sequences
Our method requires as input the parse tree of a program—because
parse trees can be made for any programming language, every fur-
ther step works exactly the same regardless of the initial language.
We assume that input programs are syntactically well-formed,
which is reasonably ensured via a course policy which states that
only compiling programs may receive credit. To get parse trees, we
use the ANTLR parser generator [7], which has existing grammars
for several popular languages.

Adding support for a new language. With this in mind, to apply our
approach to a new language, a user needs only to: (1) find (or create)
an ANTLR grammar describing the language; (2) use the ANTLR
tool to create a corresponding parser for the grammar; (3) write
fairly straightforward boilerplate code to attach the parser to our
tool; (4) provide minimal information for filtering (see Section 3.3).
To keep things concrete, we focus on Java for the remainder of this
paper, but any other language could be substituted in its place.

The parser from ANTLR produces parse trees corresponding to
input programs. Oncewe obtain a parse tree for two given programs,
we linearize the two trees by performing a postorder traversal and
outputting the labels of each node traversed. Once we have the two
programs that we wish to compare in this linearized form, we then
preprocess them before performing sequence alignment on them.
The first preprocessing step is sorting the functions.

3.2 Sorting
Because we are comparing entire files at a time, we must be wary
of a common plagiarism operation: function rearrangement. The
order of the functions should not matter when evaluating cases of
plagiarism—it makes no difference if foo() comes before or after
bar() if their contents are plagiarized.

The heuristic we use is to sort functions in each file by size (i.e.,
the number of nodes in the parse tree) before we linearize each
parse tree. We found that this gives good results while avoiding the
exponential blowup that would occur with trying every possible
combination of functions.

After the linearized sequences are in this sorted order, we can
further prune and enhance the information contained within them.

3.3 Filtering, Abstraction, and Weight
In this step, we determinewhich parse tree node labels to keep, what
equivalence class they belong to (if any), and provide a relative score
that indicates how important a given label is. Users must provide
information specifying how labels are grouped, once per language.
We explain each case along with its justification.

Filtering. Another common plagiarism operation is renaming vari-
able names and other identifiers, so we cannot trust any such node
in a parse tree. We have a filtering phase to get rid of these and
other parse tree labels that we deem unsuitable for comparison. In
fact, we found the ratio of useful to interesting nodes to be so small
that we only require a list of nodes to keep.

As an example, consider the Java grammar rule for expressions:
expression

: primary
...
| methodCall
| NEW creator
| '(' typeType ')' expression
| expression postfix=('++' | '--')
| prefix=('+'|'-'|'++'|'--') expression
...

This is essentially a catch-all rule, and almost every line of Java
code will contain an expression node in its sub-parse tree. As
such, there no useful information in expression, and so we omit it
from our output. There are many similar rules in the Java grammar.

Abstraction. Several nodes act in a similar way, and should be con-
sidered as such. For example, several if/else statements may be
transformed into one switch statement, and vice versa. We there-
fore consider parse tree node labels for if/else and switch to be
in the same equivalence class, and we consider them to “match”
in our Smith-Waterman algorithm. Different kinds of loops also
belong together in the same equivalence class.

This concludes our preprocessing steps. We are now ready to
compare two program sequences with a modified Smith-Waterman
algorithm. Before introducing our algorithm, we first discuss se-
quence comparison in general.

3.4 Comparing Sequences: False Start
Smith-Waterman is a relatively unfamiliar algorithm to most com-
puter scientists, so we will briefly compare it to the more familiar
and similar concept of string edit distance. Levenshtein distance is
the most common string edit distance measurement algorithm.

Levenshtein distance has notions of insertion, deletion, and mis-
match “costs”, and the final answer is the minimized cost of perform-
ing these different string-altering operations. Overall, Levenshtein
distance determines the most cost-effective way to turn one string
into another. Smith-Waterman has similar computational costs,
but matching is more customizable; for example, Smith-Waterman
allows a matrix of scores, which allows a programmer to give dif-
ferent match/mismatch scores to different pairs of elements of a
sequence. In this work, we assign higher scores to programs that
match at certain key nodes, such as loops and if statements.

Levenshtein distance also computes a cost over the entire string,
in what is known as a global alignment. For example, comparing
the strings A = ‘‘cat’’ and B = ‘‘␣ ␣ ␣cat␣ ␣’’ results in a score
of 5, because the entire string A must be transformed into the entire
string B. In contrast, Smith-Waterman performs a local alignment
and finds the largest substrings of each string that match. Local
alignment is important for our purposes because we want to give a
high similarity score to a pair of programs when a portion of one is
found in the other; our method would be less accurate if we only
gave high similarity scores to program pairs when they have almost
everything in common.

3.5 Comparing Sequences: Smith-Waterman
The Smith-Waterman algorithm [13] is a dynamic programming-
based sequence alignment algorithm. It computes a numerical value
representing how similar or dissimilar two sequences are. Originally
implemented with bioinformatics in mind, it is used to compare
biological sequences (e.g., RNA and proteins) and to determine
how closely two such sequences overlap each other. The algorithm
works for sequences of any kind, not just sequences of characters;
in this work, we align sequences of abstracted parse tree nodes.

Smith-Waterman is parameterized by a gap score (for insertions
and deletions) and a scoringmatrix (for matching andmismatching).
This matrix is consulted each time nodes are compared to determine
how similar they are, and so tuning this matrix has a major impact
on the results. We simplify the process of constructing a scoring
matrix by: (1) providing all nodes that match a default match score,
and all nodes that do not match a default mismatch score; and (2)
assigning relative weights to certain matches.

Weights. Experimentally, we found that some label classes are more
important than others. For example, it is quite likely that several if
statements will match in a plagiarized pair of programs, whereas
assignment statements do not closely correspond. For this reason,
we assign relative weights to certain equivalence classes of labels.
Just like the rest of our method, these weights are completely cus-
tomizable to fit any instructor’s needs. The relevant portion of our
weight/equivalence class file follows:
{"conditional": 5, "loop": 5, "return": 5,
"functioncall": 5, "assign": 2}

This syntax specifies that conditional statements (e.g., if/else,
switch) that match are to be given 5× the match score. If such a
node does not match, we perform the same multiplcation against
the mismatch score.

Final steps. After obtaining a similarity score from the Smith-Wa-
terman algorithm, we normalize the scores to be between 0.0 and
1.0. Without such a normalization, larger plagiarized program pairs
(which naturally have more similar portions than shorter plagia-
rized program pairs) would have larger scores, rendering sorting
by score useless.
4 COMPLETE EXAMPLE
This section goes through an in-depth example of our method.

Description of the programs. Figure 2 contains three example pro-
grams: A, B, and C. Programs A and B have been plagiarized using
several common operations (e.g., identifier renaming, manipulation

of spacing, etc.) [4], while program C is independent of A and B.
We use this example to demonstrate our method, and we further
elaborate on plagiarism operations in our evaluation (Section 5).

Parsing. We first parse the three programs, creating the parse trees
shown in Figure 3. None of these parse trees look similar to each
other, with differences in both the number of nodes and node struc-
ture. Our goal is to get Programs A and B into a format where they
both “look” similar; it is for this reason that we preprocess and
linearize the parse tree nodes.

Sorting. We then extract functions and sort them by their size, in
terms of the number of parse tree nodes. In this example, sortingwill
not change the function order in Program A. However, in Program
B, func2will be moved to come before func1. This sorting heuristic
thus puts the plagiarized functions in the same order.

Linearization. We then perform a postorder traversal of the parse
trees before we prune further. The contents, however, are the im-
portant part, and we want to get Programs A and B into a format
where they have a lot in common. The first few nodes of Program
A’s bar function are (bold font indicating common elements):

TerminalNodeImpl, IdentifierNonterminal, (,
TerminalNodeImpl,), TerminalNodeImpl,
FormalParameters, {, TerminalNodeImpl, int,
TerminalNodeImpl, PrimitiveType, TypeType, sum,
TerminalNodeImpl, VariableDeclaratorId, =,
TerminalNodeImpl, 0, TerminalNodeImpl, Literal,
Primary, PrimaryExpression, VariableInitializer,
VariableDeclarator, VariableDeclarators,
LocalVariableDeclaration, . . .

The first few nodes of Program B’s func1 function are:
TerminalNodeImpl, IdentifierNonterminal, (,
TerminalNodeImpl, int, TerminalNodeImpl,
PrimitiveType, TypeType, dummy1, TerminalNodeImpl,
VariableDeclaratorId, FormalParameter,
TerminalNodeImpl, int, TerminalNodeImpl,
PrimitiveType, TypeType, dummy2, TerminalNodeImpl,
VariableDeclaratorId, FormalParameter,
FormalParameterList,), TerminalNodeImpl,
FormalParameters, {, TerminalNodeImpl, int, . . .

While there are similarities at the beginning, they do not last long.
func2’s extra parameters and names, as well as the extra statements
at the beginning, are taking up a substantial amount of space, so we
want to remove them. Similarly, any identifier names are naturally
untrustworthy, and are thus ripe for removal. Not shown are the
nodes for the while and for loops, which are currently considered
different; we want to treat these as being similar to each other.

Pruning and Abstraction. Beforehand, we have compiled a set of
“useful” parse tree nodes which we want to keep; it is only neces-
sary to do this once per language. In this step, we prune out any
node that is not in our useful set. After performing this pruning,
we are left with sequences that are typically ~33% as large as the
originals. Pruning reduces both the amount of input to process
downstream (improving performance), as well as the amount of
irrelevant “noise” in the input (improving accurracy/precision). The
final nodes of Program A’s bar function are (bold font indicating
common elements):

public class A {
public void foo() {

for (int i = 1; i < 10; i++) {
System.out.println(i);

}
}

public int bar() {
int sum = 0;
for (int i = 0; i < 10; i++) {

for (int j = 0; j < 10; j++) {
sum += i + j;

}
}
return sum;

}
}

(a) Program A

public class B
{public int func1(int dummy1, int dummy2)

{int extraStmt1 = 5; int extraStmt2 = 42;
int s = 0; int i = 1;

while (11 > i)
{ int j = 1; while (11 > j) {

s += (i - 1) + (j - 1);
j = j + 1;

}
++i;

}
return s;

}
public void func2()
{int z = 1; while (10 > z)
{System.out.println(z); z++;}}

}

(b) Program B

public class C {
public void hello() {

System.out.println("Hello, world!");
}

public int sum2(int x) {
int a = 0;
for (;;) {

if (x <= 0) break;
a += x;
x--;

}
return a;

}
}

(c) Program C

Figure 2: Three contrived example programs: A and B for a plagiarized pair, while C has no plagiarized information taken
from A or B.

(a) Parse tree for Program A (b) Parse tree for Program B (c) Parse tree for Program C

Figure 3: A bird’s eye view of the parse tree structure for Programs A, B, and C.

. . . , Primary, Primary, AdditiveExpression,
AssignExpression, ForLoop, ForLoop, Primary,
ReturnStatement

The last nodes of Program B’s func1 function are:
. . . , Literal, Primary, AdditiveExpression,
AssignExpression, WhileLoop, Primary,
PrefixIncDecNegPlus, WhileLoop, Primary,
ReturnStatement

These pruned sequences share several similar elements, and se-
quence alignment will give a larger score on these than the originals.
One final step that is not shown is abstraction, where we group sim-
ilar nodes. In this example, we will end up grouping WhileLoop and
ForLoop into the same equivalence class, and so we will consider
them to represent the same node; this allows sequence alignment
to return a larger score for these plagiarized programs.

Smith-Waterman. Running Smith-Waterman on the abstracted se-
quences is the last step. We run the algorithm for each pair of input
programs with the scoring matrix generated by the supplied node

weights. The scores are relative to each other, and are not meaning-
ful on an absolute scale. Higher-scoring pairs are more indicative
of plagiarism than lower-scoring pairs, and in practice users need
only look at the several highest-scoring pairs to find plagiarism.

The final scores. After all this work has been done, we are left with
a similarity score between 0 and 1 for each pair of programs:

• Program A and Program B: 0.299
• Program A and Program C: 0.193
• Program B and Program C: 0.120

In this case, our method has correctly scored the plagiarized pro-
gram pair higher than the non-plagiarized program pairs.

5 EVALUATION
In this section we compare our method to existing methods.

5.1 What We Compare Against
We evaluate our method against MOSS [12] and JPLAG [10], both
widely used plagiarism detection tools. We tested MOSS in Java

Table 1: Results for each method. ↓ indicates that a lower value is better, and ↑ indicates that a higher value is better

Method Cutoff Time (s)
(↓)

True Pos.
(↑)

False Pos.
(↓)

True Neg.
(↑)

False Neg.
(↓)

Precision
(↑)

Recall
(↑)

F-Measure
(↑)

Our method 0.15 115.9 33 16 4,884 17 0.673 0.660 0.667
Zhang and Liu 0.58 970.3 16 37 4,863 34 0.302 0.320 0.311

MOSS, Java Mode 0.44 30.8 11 33 4,867 39 0.250 0.220 0.234
MOSS, Text Mode N/A 4.1 0 0 4900 50 ∞ 0.000 0.000

JPLAG 0.17 4.7 18 46 4,854 32 0.281 0.360 0.316

mode and in text mode; we did this to evaluate what would happen
if MOSS was run on a language that it does not support. Both MOSS
and JPLAG were run with default parameters.

We also evaluate against our implementation of Zhang and Liu’s
method [8]. Both our method and Zhang and Liu’s method require
multiple parameters, namely a tree traversal order, a match score,
a mismatch score, and a gap score. We experimentally determined
optimal values for each of these parameters. For our method, we
use postorder traversal, a match score of 1, a mismatch score of -1,
and a gap score of -2. For Zhang and Liu, we use preorder traversal,
a match score of 1, a mismatch score of -1, and a gap score of -1—we
also tried a gap score of -2, but -1 gave better results.

5.2 Benchmarks and Methodology
To address the bias problem discussed in Section 2.1, we employ
random program generation and random program transformation
to create our benchmark suite. We have created 50 pairs of original
and plagiarized Java programs for a total of 100 Java programs,
and we evaluate by comparing all pairs of those 100 programs. We
implemented our generator to perform several popular plagiarism
obfuscations observed in the wild [4]:

• Addition of random amounts of whitespace.
• Changing every identifier name (e.g., variable names, argu-
ment names, function names, etc.).

• Changing type names to equivalent ones (we overapproxi-
mate this by transforming type names into random strings).

• Changing operations to equivalent ones (e.g., replacing A +
B < C with C > B +A).

• Replacing control structures with equivalent ones (e.g., swap-
ping while with for and vice versa).

• Changing the order of statements and functions.

Our metrics are the standard ones of precision (true positives /
(true positives + false positives)) and recall (true positives / (true
positives + false negatives)). These numbers are combined via F-
measure [11], which provides a single number to compare the
relative performance of each method.

5.3 Results
Table 1 shows the results for everymethod that we tried. There were
4,950 possible pairs of programs to compare, and 50 “true” cases
of plagiarism; all other pairs are considered to be false positives.
Each method produces a score between 0 and 1 indicating the
likelihood that a pair was plagiarized. To convert this score to
a binary yes/no for whether or not plagiarism was detected, we
selected a cutoff value for each technique, where scores ≥ to the
cutoff were considered indicative of plagiarism. Cutoff scores were
picked to maximize the F-measure for each method.

Discussion. Our method has the best F-measure, and the running
time is in the middle of the group.

Both ours and Zhang and Liu’s methods start with the same
parse trees and subsequently run an O(n2) algorithm. However, our
method is nearly 8.4x faster than Zhang and Liu’s method. This
is because our filtering stage dramatically reduces the input size,
minimizing n in the aforementioned time complexity. It is possible
that pruning obviously non-matching pairs (e.g., programs of vastly
different lengths) could help to further reduce our runtime, but we
leave this investigation for future work.

MOSS’ text mode returned no matching results, which was to
be expected; all identifiers were changed, and so there would be no
meaningful matches in any slidingwindow of results. As such, while
Winnowing [12] (the technique MOSS is based on) is language-
agnostic, MOSS itself is not. While some effort is needed to apply
our technique to a new language, this is fundamentally impossible
with MOSS, due to MOSS’ closed-source nature.

MOSS’ Java mode and JPLAG both had similar results. MOSS’
time includes sending the files over the network and waiting for a
response from the server, so it is possible that the running time of
the main plagiarism detection algorithm is closer to that of JPLAG.
Threats to Validity. Our method cannot detect every kind of plagia-
rism. For example, it cannot currently handle obfuscation where
functions are broken down into many small functions, though it
would be possible to mitigate this issue (at the expense of increased
runtime) by comparing all function pairs. Semantic similarity is also
a research-worthy challenge: it is always possible to trick a syntax-
based method by swapping the code with completely different code
that does the same thing (e.g., insertion sort with quicksort).

6 CONCLUSION
In this paper we presented a plagiarism detection method based on
the Smith-Waterman sequence alignment algorithm. Our method
works for any language with a grammar, and converts parse trees
to a linearized form. We demonstrate that preprocessing these se-
quences is key; through filtering, abstracting, and sorting we are
able to find more true cases of plagiarism than popular, existing
methods such as MOSS. Our evaluation utilizes random program
generation and plagiarism obfuscations, minimizing biases subcon-
sciously introduced when working with handwritten benchmark
suites. Program generation also allows us to obtain exact ground
truth, which is not obtainable from student code. We have made
our tool and its source code freely available.

In the future, we would like to investigate skipping the lineariza-
tion phase; there are existing tree alignment algorithms, and it
remains to be shown whether they are able to scale and perform
as well as our current method. We may also be able to improve the
runtime of our method via further input pruning.

Acknowledgments
This work was supported by NSF CCF-1319060.

REFERENCES
[1] Michel Chilowicz, Etienne Duris, and Gilles Roussel. 2009. Syntax tree finger-

printing for source code similarity detection. In Program Comprehension, 2009.
ICPC’09. IEEE 17th International Conference on. IEEE, 243–247.

[2] Deqiang Fu, Yanyan Xu, Haoran Yu, and Boyang Yang. 2017. Wastk: A weighted
abstract syntax tree kernel method for source code plagiarism detection. Scientific
Programming 2017 (2017).

[3] David Gitchell and Nicholas Tran. 1999. Sim: a utility for detecting similarity in
computer programs. In ACM SIGCSE Bulletin, Vol. 31. ACM, 266–270.

[4] Vítor T Martins, Daniela Fonte, Pedro Rangel Henriques, and Daniela da Cruz.
2014. Plagiarism detection: A tool survey and comparison. In OASIcs-OpenAccess
Series in Informatics, Vol. 38. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[5] Lefteris Moussiades and Athena Vakali. 2005. PDetect: A clustering approach for
detecting plagiarism in source code datasets. The computer journal 48, 6 (2005),
651–661.

[6] Sandhya Narayanan and S Simi. 2012. Source code plagiarism detection and
performance analysis using fingerprint based distance measure method. In Com-
puter Science & Education (ICCSE), 2012 7th International Conference on. IEEE,
1065–1068.

[7] Terence J. Parr and Russell W. Quong. 1995. ANTLR: A predicated-LL (k) parser
generator. Software: Practice and Experience 25, 7 (1995), 789–810.

[8] Li ping Zhang and Dong sheng Liu. 2013. AST-based multi-language plagiarism
detection method. In Software Engineering and Service Science (ICSESS), 2013 4th
IEEE International Conference on. IEEE, 738–742.

[9] Bruno Prado, Kalil A Bispo, and Raul Andrade. 2018. X9: An Obfuscation Resilient
Approach for Source Code Plagiarism Detection in Virtual Learning Environ-
ments.. In ICEIS (1). 517–524.

[10] Lutz Prechelt, Guido Malpohl, and Michael Phlippsen. 2000. JPlag: Finding
plagiarisms among a set of programs. (2000).

[11] Yutaka Sasaki et al. 2007. The truth of the F-measure. (2007).
[12] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. 2003. Winnowing: local

algorithms for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data. ACM, 76–85.

[13] T.F. Smith and M.S. Waterman. 1981. Identification of common molecular
subsequences. Journal of Molecular Biology 147, 1 (1981), 195 – 197. https:
//doi.org/10.1016/0022-2836(81)90087-5

[14] Jeong-Woo Son, Seong-Bae Park, and Se-Young Park. 2006. Program Plagiarism
Detection Using Parse Tree Kernels. In PRICAI 2006: Trends in Artificial Intelligence,
Qiang Yang and GeoffWebb (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
1000–1004.

[15] Lisan Sulistiani and Oscar Karnalim. 2019. ES-Plag: Efficient and sensitive source
code plagiarism detection tool for academic environment. Computer Applications
in Engineering Education 27, 1 (2019), 166–182.

[16] Narjes Tahaei and David C Noelle. 2018. Automated Plagiarism Detection for
Computer Programming Exercises Based on Patterns of Resubmission. In Proceed-
ings of the 2018 ACM Conference on International Computing Education Research.
ACM, 178–186.

https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/0022-2836(81)90087-5

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Evaluating Plagiarism Detectors
	2.2 Related Work on Plagiarism Detection

	3 Our Method
	3.1 Parsing: ANTLR Grammars to Sequences
	3.2 Sorting
	3.3 Filtering, Abstraction, and Weight
	3.4 Comparing Sequences: False Start
	3.5 Comparing Sequences: Smith-Waterman

	4 Complete Example
	5 Evaluation
	5.1 What We Compare Against
	5.2 Benchmarks and Methodology
	5.3 Results

	6 Conclusion
	References

