
Theoretical Computer Science 851 (2021) 39–61
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Safe functional systems through integrity types and verified

assembly

Michael Christensen a,∗, Joseph McMahan b,1, Lawton Nichols a, Jared Roesch b,1,
Timothy Sherwood a, Ben Hardekopf a

a University of California, Santa Barbara, United States of America
b University of Washington, Seattle, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 October 2019
Received in revised form 26 May 2020
Accepted 18 September 2020
Available online 23 September 2020
Communicated by C.S. Calude

Keywords:
Formal methods
Computer architecture
Functional programming
Binary analysis

Building a trustworthy life-critical embedded system requires deep reasoning about the
potential effects that sequences of machine instructions can have on full system operation.
Rather than trying to analyze complete binaries and the countless ways their instructions
can interact with one another — memory, side effects, control registers, implicit state,
etc. — we explore a new approach. We propose an architecture controlled by a thin
computational layer designed to tightly correspond with the lambda calculus, drawing
on principles of functional programming to bring the assembly much closer to myriad
reasoning frameworks, such as the Coq proof assistant. This approach allows assembly-
level verified versions of critical code to operate safely in tandem with arbitrary code,
including imperative and unverified system components, without the need for large
supporting trusted computing bases. We demonstrate that this computational layer can
be built in such a way as to simultaneously provide full programmability and compact,
precise, and complete semantics, while still using hardware resources comparable to
normal embedded systems. To demonstrate the practicality of this approach, our FPGA-
implemented prototype runs an embedded medical application which monitors and treats
life-threatening arrhythmias. Though the system integrates untrusted and imperative
components, our architecture allows for the formal verification of multiple properties
of the end-to-end system. We present a proof of correctness of the assembly-level
implementation of the core algorithm in Coq, the integrity of trusted data via a non-
interference proof, and a guarantee that our prototype meets critical timing requirements.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Embedded devices are ubiquitous, with many now playing roles that support human health, well-being, and safety. The
critical nature of these systems — automotive, medical, cryptographic, avionic — is at odds with the increasing complexity
of embedded software overall: even simple devices can easily include an HTTP server for monitoring purposes. Traditional

* Corresponding author.
E-mail addresses: mchristensen@cs.ucsb.edu (M. Christensen), jmcmahan@cs.washington.edu (J. McMahan), lawtonnichols@cs.ucsb.edu (L. Nichols),

jroesch@cs.washington.edu (J. Roesch), sherwood@cs.ucsb.edu (T. Sherwood), benh@cs.ucsb.edu (B. Hardekopf).
1 Contributions were made while a graduate student at UC Santa Barbara.
https://doi.org/10.1016/j.tcs.2020.09.039
0304-3975/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.tcs.2020.09.039
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2020.09.039&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:mchristensen@cs.ucsb.edu
mailto:jmcmahan@cs.washington.edu
mailto:lawtonnichols@cs.ucsb.edu
mailto:jroesch@cs.washington.edu
mailto:sherwood@cs.ucsb.edu
mailto:benh@cs.ucsb.edu
https://doi.org/10.1016/j.tcs.2020.09.039
http://creativecommons.org/licenses/by/4.0/

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
processor interfaces are inherently global and stateful, making the task of isolating and verifying critical application subsets
a significant challenge. Architectural extensions have been proposed that enhance the power, performance, and functionality
of systems, but in contrast, we cover the first architecture designed with formal program analysis as a core motivating
principle.

High-level, functional languages offer a remarkable ability to reason about the behavior of programs, but are often
unsuited to low-level embedded systems, where reasoning must be done at the assembly level to give a full picture of the
code that will actually execute. At a high level, in a language designed for verification, reasoning typically requires relying
on a language run-time that can be prohibitive for resource-constrained or real-time embedded systems, and/or require the
assumption that thousands of lines of untrusted code in the language stack are correct.

Another approach is to directly model the processor interface by giving formal semantics to the ISA. However, reasoning
about binary behavior on traditional architectures is difficult and often left incomplete. Unless all program components
and architectural behaviors are included, any piece outside the expected model could mutate a piece of machine state and
violate the assumptions of the verification effort. Even assuming that never happens, using a verified compiler, assuming
other modules are correct, using only a subset of the ISA and assuming the rest is unused, program-specific reasoning is
still difficult — i.e., reasoning about C still means reasoning about pointers, memory mutation, and countless imperative,
effectful behaviors.

We propose a system where the critical code can execute at the assembly level in a way that is very similar to the under-
lying computational model upon which proof and reasoning systems are already built. Under such a mode of computation,
properties such as isolation, composition, and correctness can be reasoned about incrementally, rather than monolithically.
However, instead of requiring a complete reprogramming of all software in a system, we instead examine a novel system
architecture consisting of two cooperating layers: one built around a traditional imperative ISA, which can execute arbitrary,
untrusted code, and one built around a novel, complete, purely functional ISA designed specifically to enable reasoning about
behavior at the binary level. Application behaviors that are mission critical can be hoisted piecemeal from the imperative to
the functional world as needed.

Our proposed system, the Zarf Architecture for Recursive Functions [1], observes the following properties:

1. The functional ISA, “Zarf,” is devoid of all global or mutable state, and provides a compact, complete, and mathematical
semantics for the behavior of instructions;

2. The imperative ISA is strictly separated from the functional ISA, connected only via a communication channel through
which the system components can pass values;

3. The subset of the application which operates on Zarf can be verified and reasoned about without regard to the operation
of the imperative components, meaning that only the critical components need to be ported and modeled;

4. Reasoning on the functional ISA is provably composable — i.e., two separate pieces can be statically shown to never
interfere with each other.

To demonstrate the usefulness of this platform, we develop, model, and test a sample application which implements
an Implantable Cardio-Defibrillator (ICD) — an embedded medical device which is implanted in a patient’s chest cavity,
monitors the heart, and administers shocks under certain conditions to prevent or counter cardiac arrest. Though ICDs pro-
vide life-saving treatment for patients with serious arrhythmia, these devices, along with other embedded medical devices,
have seen thousands of recalls due to dangerous software bugs [2,3]. By leveraging this two-layer approach, we are able to
formally verify the correctness of a low-level implementation of the core functions in Coq and directly extract executable
assembly code without needing software runtimes. The ISA semantics allow us to construct an integrity type system and
formally prove that the rest of the code never corrupts the inputs or outputs of the critical functions. Furthermore, the
functional abstraction built in to the binary code allows us to bound worst-case execution time, even in the face of garbage
collection. Taken altogether, we have an embedded medical application whose core components have been proven correct,
where non-interference is guaranteed, where real-time deadlines are assured to be met, and where C code can execute
arbitrary auxiliary functions in parallel for monitoring. The high-level system architecture is shown in Fig. 1.

Given the significant amount of related efforts in verification and ISA design, we begin by summarizing how our work
differs from previous efforts in the fields of verification and architecture (Section 2). We then describe the Zarf platform
in more detail and describe a hardware implementation, which runs the application on an FPGA (Section 3). Details of our
embedded ICD software application and the ways it can leverage the properties of the Zarf platform are described next
(Section 4), followed by a precise definition of Zarf’s semantics (Section 5). We then discuss the verification of multiple
properties of the critical sub-components of the ICD, covering correctness, timing, and non-interference (Section 6). Finally,
we evaluate this system architecture and approach, presenting hardware resource requirements of the novel ISA, and exam-
ine the performance loss of the verified components when compared to an unverified C alternative (Section 7), and conclude
(Section 8).
40

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
Fig. 1. High-level Zarf system architecture: by dividing the system into two hardware realms — one that provides a precise, mathematical semantics for
reasoning about program behavior, and the other a standard imperative core for legacy software — we can formally verify and otherwise reason about
critical subsets of applications without needing to model and verify the entire program.

2. Related work

2.1. Verification

Our dual ISA approach, where one is untrusted and the other trusted, draws in part on Rushby’s work on security kernels
[4]. He separates machine components into virtual “regimes” and proves isolation. Having done so, Rushby can then show
that security is maintained when introducing clearly defined and limited channels of communication whose information
flow can be tracked. Our imperative and functional ISAs behave as separate components, communicating only through a
specified, dedicated channel, thus eliminating any insecure information flow — via memory contamination, for example.

Our security type system draws from the work done on the Secure Lambda (SLam) calculus by Heintze and Riecke [5]
and its further development by Abadi et al. in their Core Calculus of Dependency [6]. It also draws inspiration from Volpano
[7] et al., who created a type system for secure information flow for an imperative block-structured language. By showing
that their type system is sound, they show the absence of flow from high-security data to lower-security output, or similarly,
that low-security data does not affect the integrity of higher-security data. Other seminal work on secure information flow
via the formulation of a type system includes Denning [8], Goguen [9], Pottier’s information flow for ML [10], and Sabelfeld
and Myers’s survey on language-based information flow security [11].

Productive, expressive high-level languages that are also purely functional are excellent source platforms for Zarf. Even
languages like Haskell, though, can have occasional weaknesses that can lead to runtime type-errors. Subsets such as Safe
Haskell [12] shore up these loopholes, and provide extensions for sandboxing arbitrary untrusted code. Zarf provides iso-
lation guarantees at the ISA level and does not require runtimes, but relies on languages like Safe Haskell for source code
development.

Previous work on ISA-level verification has often involved either simplified or incomplete models of the architecture.
These can be in the form of new “idealized” assembly-like languages: Yu et al. [13] use Coq to apply Hoare-style reasoning
for assembly programs written in a simple RISC-like language. They also provide a certified memory management library
for the machine they describe. Chlipala presents Bedrock, a framework that facilitates the implementation and verification
of low-level programs [14], but limits available memory structures.

Kami [15] is a platform for specifying, implementing, and verifying hardware designs in Coq. By making the language of
design the same as the language of verification, the gap that traditionally exists between high-level specification and actual
hardware implementation is minimized. A key distinction between Kami and our work is that Zarf focuses on building
a processor specifically to make software verification easier, while Kami focuses on the task of specifying and building
verifiable hardware. The two are very complementary — you can build a traditional imperative machine using Kami (e.g.
their pipelined RISC-V processor implementation), and you can build a Zarf machine using traditional hardware design.

Verification has also been done for subsets of existing machines. For example, a “substantial” subset of the Motorola
MC68020 interface is modeled and used to mechanically prove the correctness of quicksort, GCD, and binary search [16];
other examples include a formalization of the SPARC instruction set, including some of the more complex properties, such as
branch delay slots [17]; and subsets of x86 [18]. One of the biggest efforts to date has been a formal model of the ARMv7 ISA
using a monadic specification in HOL4 [19]. Moore developed Piton, a high level assembly language and a verified compiler
for the FM8502 microprocessor [20], which complemented the verification work done on the FM8502 implementation [21].
These are large efforts because of the difficulty in reasoning about imperative systems. At higher levels of abstraction, entire
journal issues have been devoted to works on Java bytecode verification [22].
41

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
In addition to proofs on machine code for existing machines, it is also possible to define new assembly abstractions
that carry useful information. Typed assembly as an intermediate representation was previously identified as a method for
Proof-Carrying Code [23], where machine-checked proofs guarantee properties of a program [24]. Typed assemblies and
intermediate representations have seen extensive use in the verification community [25,14,26,27] and have been extended
with dependent types [28], allowing for more expressive programs and proofs at the assembly level.

Verified compilers are a popular topic in the verification community [29–32], the most well-known example being
CompCert [33], a verified C compiler. Verified compilers are usually equipped with a proof of semantics preservation,
demonstrating that for every output program, the semantics match those of the corresponding input program. A verified
compiler does not provide tools for, nor simplify the process of doing, program-specific reasoning. One needs a secondary
tool-chain for reasoning about source programs, such as the Verified Software Toolchain (VST) [34] for CompCert. These
frameworks often have a great cost, mandating the use of sophisticated program logics, such as higher-order separation
logic in VST, in order to fully reason about possible program behaviors.

Further, in many systems, it’s possible that not all source code is available; without being able to reason about binary
programs, guarantees made on a piece of the source program (and preserved by the verified compiler) may be violated
by other components. Extensions to support combining the output of verified compilers, such as separate compilation and
linking, are still an active research area [35,36]. As work on verified compilers requires a semantic model of the ISA, it is
complemented by our work, which gives complete and formal semantics for an ISA.

Previous work at the intersection of verification and biological systems has attempted to improve device reliability
through modeling efforts. This includes work that formulates real-time automata models of the heart for device testing
[37], formal models of pacing systems in Z notation [38], quantitative and automated checking of the interaction of heart-
pacemaker automata to verify pacemaker properties [39], and semi-formal verification by combining platform-dependent
and independent model checking to exhaustively check the state space of an embedded system [40]. Our work is com-
plemented by verification works such as these that refine device specification by taking into account device-environment
interactions.

2.2. Architecture

The SECD Machine [41] is an abstract machine for evaluating arithmetic expressions based in the lambda calculus, de-
signed in 1963 as a target for functional language compilers. It describes the concept of “state” (consisting of a Stack,
Environment, Control, and Dump) and transitions between states during said evaluation. Interpreters for SECD run on stan-
dard, imperative hardware. Hardware implementations of the SECD Machine have been produced [42], which explore the
implementation of SECD at the RTL and transistor level, but present the same high-level interface. The SECD hardware pro-
vides an abstract-machine semantics, indicating how the machine state changes with each instruction. Our verification layer
makes machine components fully transparent, presenting a higher-level small-step operational semantics, where instruc-
tions affect an abstract environment, and a big-step semantics, which immediately reduces each operation to a value. These
latter two versions of the semantics are more compact, precise, and useful for typical program-level reasoning.

The SKI Reduction Machine [43] was a hardware platform whose machine code was specially designed to do reductions
on simple combinators, this being the basis of computation. Like our verification layer, it was garbage-collected and its lan-
guage was purely applicative. The goal was to create a machine with a fast, simple, and complete ISA. The choice to use the
“simpler” SKI model means that machine instructions are a step removed from the typically function-based, mathematical
methods of reasoning about programs. Our functional ISA, while also simple and complete, chooses somewhat more robust
instructions based on function application; though the implementation is more complicated, modern hardware resources
can easily handle the resulting state machine, giving a simple ISA that is sufficiently high-level for program reasoning.

The most famous work on hardware support for functional programming was on Lisp Machines [44–46]. Lisp machines
provided a specialized instruction set and data format to efficiently implement the most common list operations used in
functional programming. For example, Knight [46] describes a machine with instructions for Lisp primitives such as CAR
and CADR, and also for complex operations like CALL and MOVE. While these machines partially inspired this work, Lisp
Machines are not directly applicable to the problem at hand. Side-effects on global state at the ISA level are critical to
the operation of these machines, and while fast function calls are supported, the stepwise register-memory-update model
common to more traditional ISAs is still a foundation of these Lisp Machine ISAs. In fact, several commercial Lisp Machine
efforts attempted to capitalize on this fact by building Lisp Machines as a thin translation layer on top of other proces-
sors.

Flicker also dealt with architectural support for a smaller TCB in the presence of untrusted, imperative code, but did so
with architectural extensions that could create small, independent, trusted bubbles within untrusted code [47]. Our archi-
tecture is almost inverted, with a trusted region providing the main control, calling out to an untrusted core as needed.
Previous works such as NoHype [48] dealt with raising the level of abstraction of the ISA and factoring software responsi-
bilities into the hardware. Our verification layer shares some of these characteristics, but deals with verification instead of
virtualization, as well as being a complete, self-contained, functional ISA.

Previous work has explored the security vulnerabilities present in many embedded medical devices, as well as zero-
power defenses against them [49–51]. The focus of our work is analysis and correctness properties, and we do not deal
with security.
42

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
3. Hardware architecture and ISA

Our system relies on two separate layers, running two different ISAs, connected only by a data channel. This allows one
of the layers to be specialized to the execution of machine code with 1) a compact, precise, and complete semantics highly
amenable to proofs, and 2) the ability to compose verified pieces safely. It is entirely possible that all code in the system
be written to be purely functional and run on Zarf: the ISA for this layer is complete. However, embedded devices often
contain a mix of software, including legacy code or nice-to-have features that do not affect the application’s behavior, such
as relaying data and diagnostic information to outside receivers. With a two-layer approach, we can run imperative code
that is orthogonal to the operation of critical application components while still connecting with the vetted, functional code
in a structured way. This, in turn, allows code to be formally verified piecemeal, with functions “raised” into Zarf as deemed
necessary.

The following subsections describe the interface and construction of Zarf, including the reasons we take an approach
much closer to the lambda calculus underlying most software proof techniques, how we capture this style of execution in
an instruction set, the semantics for that instruction set, and more practical considerations such as I/O, errors, and ALU
functions.

3.1. Design goals

Normal, imperative architectures have been difficult to model, and the task of composing verified components is still an
open problem [35,36]. We identify the following features as undesirable and counterproductive to the goal of assembly-level
verification:

1. Large amounts of global machine state (memory, stack, registers, etc.) directly accessible to instructions, all of which
must be modeled and managed in every proof, and which inhibit modularity: state may be modified by code you
haven’t seen.

2. The mutable nature of machine state, which prevents abstraction and composition when reasoning about functions or
sets of instructions.

3. A large number of instructions and features: a complete model must incorporate all of them (e.g., fully modeling the
behavior of the ARMv7 was 6,500 lines of HOL4 [19]).

4. Arbitrary control flow, which often requires complex and approximate analyses to soundly determine possible control
flows [52].

5. Unenforced function call conventions, meaning one must prove that every function respects the convention.
6. Implicit instruction semantics, such as exceptions where “jump” becomes “jump and update registers on certain condi-

tions.”

To avoid these traits, we design an interface that is small, explicit in all arguments, and completely free of state manip-
ulation and side effects — with the exception of I/O, which is necessary for programs to be useful. Without explicit state
to reference (memory and registers), standard imperative operations become impossible, and we must raise the level of ab-
straction. Instead of imperative instructions acting as the building blocks of a program, our basic unit is the function. This is
a major departure from a typical imperative assembly, where the notion of a “function” is a higher-level construct consisting
of a label, control flow operations, and a calling convention enforced by the compiler — but which has no definition in the
machine itself. By bringing the definition of functions to the ISA level, they become not just callable “methods” that serve
to separate out independent routines, but are actually strict functions in the mathematical sense: they have no side effects,
never mutate state, and simply map inputs to outputs. This change allows us to attach precise and formal semantics to the
ISA operations.

3.2. Description and semantics

Zarf’s functional ISA is effectively an a) untyped, b) lambda-lifted, c) administrative normal form (ANF) lambda calculus.
Those limitations are a result of the implementation being done in real hardware: a) to avoid the complexity of a hardware
typechecker, the assembly is untyped2; b) because every function must live somewhere in the global instruction memory,
only top-level declarations of functions are allowed (lambda-lifted); c) because the instruction words are fixed-width with a
static number of operands, nested expressions are not allowed and every sub-expression must be bound to its own variable
(ANF). The abstract syntax of Zarf assembly is given in Fig. 2.

All words in the machine are 32-bits. Each binary program starts with a magic word, a word-length integer N stating
how many functions are contained in the program, and then a sequence of N functions. Each function starts with an infor-
mational word that lets the machine know the “fingerprint” of the function (including the number of arguments expected

2 The original ISA definition as presented in the paper was untyped; in later work, we extended the ISA to include type annotations and a hardware
typechecker.
43

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
x ∈ Variable n ∈Z fn, cn ∈ Name

p ∈ Program ::= −→
decl fun main = e

decl ∈ Declaration ::= cons | func

cons ∈ Constructor ::= con cn �x
func ∈ Function ::= fun fn �x = e

e ∈ Expression ::= let | case | res

let ∈ Let ::= let x = id −→arg in e

case ∈ Case ::= case arg of
−→
br else e

res ∈ Result ::= result arg

br ∈ Branch ::= cn �x ⇒ e | n ⇒ e

id ∈ Identifier ::= x | fn | cn | op

arg ∈ Argument ::= n | x

op ∈ PrimOp ::= + | − | × | ÷ | =
| < | ≤ | ∧ | ∨ | ∧̄ | �
| ⊕ | � | � | sra | ¬ | getint | putint

Fig. 2. The Abstract Syntax for Zarf’s functional ISA. A program is a set of function and constructor declarations, where functions are composed solely of
let, case, and result expressions, and constructors are tuples with unique names. Case expressions contain branches and serve as the mechanism for
both control flow and deconstruction of constructor forms. An arrow over any metavariable (e.g. �x) signifies a list of zero or more elements. op refers to
a function that is implemented in hardware (such as ALU operations); though the execution of the function invokes a hardware unit instead of a piece of
software, the functional interface is identical to program-defined functions.

and how many locals will be used) and a word-length integer M to specify that the body of the function is M words long.
The remaining M words of the function are then composed entirely of the individual instructions of the machine.

Each function, as it is loaded, is given a unique and sequential identifier. These function identifiers are the only globally
visible state in the system and serve as both a kind of name and a kind of pointer back to the code. Other functions can
refer to, test, and apply arguments to function identifiers. There are two varieties of function identifiers: those that refer
to full functions that contain a body of code, and “constructors,” which have no body at all. Constructors are essentially
stub functions and cannot be executed. However, just like other functions, you can apply arguments to them. These special
function identifiers thus can serve as a “name” for software data types, where arguments are the composed data elements.
(In more formal terms, you can use our constructors to implement algebraic data types.)

The words defining the body of a function are built out of just three instructions: let, case, and result, which we
will describe below. Unlike RISC instructions, let and case can be multiple words long (depending on the number of
arguments and branches, respectively). However, unlike most CISC instructions, each piece of the variable length instruction
is also word-aligned and trivial to decode.

Zarf has no programmer-visible registers or memory addresses, but instructions will still need to reference particular
data elements. Instructions can refer to data by its source and index, where the source is one of a predefined set — e.g.,
local and arg, which serve a purpose similar to the stack on a traditional machine. The local and arg indices might be
analogous to stack offsets, while the actual addresses themselves are never visible.

The primary ways of generating Zarf assembly are via extraction from Coq and writing it by hand. We also have a
Haskell compiler that supporting a subset of basic Haskell constructs. In our experience, Zarf assembly code resembles a
typical functional programming language like desugared Haskell or OCaml, and the resultant expressibility makes directly
writing assembly relatively easy; the user doesn’t need to worry about memory address calculations, maintaining register or
stack state across function calls, or the myriad other things that make programming traditional ISAs tedious and error-prone.
For more information on automatic Coq extraction, see our discussion of the ICD implementation in Section 6.

Fig. 5 gives the complete ISA behavior using a big-step semantics, which explains how each instruction reduces to a
value. This semantics uses eager evaluation for simplicity; though the current hardware implementation uses lazy semantics,
the difference is not observable in our application because I/O interactions are localized to a specific function and always
evaluated immediately. The semantics use assembly keywords for readability; Fig. 3 shows how the assembly maps one-to-
one with the binary encoding, and Fig. 7 shows how low-level Coq code can be directly converted to our assembly.

3.3. Instruction set

The let instruction applies a function to arguments and assigns it a local identifier. The first word in the let instruction
indicates a function identifier or closure object and the number of argument words that follow. Note that unlike a function
“call”, let does not immediately change the control flow or force evaluation of arguments; rather it creates a new structure
in memory (closure) tying the code (function identifier) to the data (arguments), which, when finally needed, can actually
be evaluated (using lazy evaluation semantics). Additionally, the let instruction allows partial application, meaning that
new functions (but not function identifiers) can be dynamically produced by applying a function identifier to some, but not
all, of its arguments.
44

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
Fig. 3. How the high-level assembly instructions are directly compiled into a Zarf binary for Zarf execution. This example shows the map function, along
with the list constructors, in (a) high-level untyped assembly, (b) machine assembly, and (c) binary. (a) The standard linked-list definition requires just
two constructors: a list is either empty or a 2-element struct containing a head (a value) and a tail (a list) [lines 1-2]. The function map takes a function
and a list as arguments [line 3]; it builds a new list, applying the function to each list element. If the argument list is empty, it returns an empty list
[lines 5-6]. Otherwise, if the list matches against the head/tail constructor [line 7], it applies the function it was given to the list element [lines 8-9], calls
map recursively on the list tail [lines 10-12], builds a new list [lines 13-15], and yields that new list [line 16]. The else branch is not shown. (b) In the
lowering to machine assembly, names are replaced with local indices, addressing a value on the locals stack (e.g., list′ becomes local 2 [line 13]). Function
allocations are broken up so that each argument occupies its own word. (c) The binary is a direct mapping from the assembly in (b), simply translating
ops to opcodes and data sources to integer identifiers. ‘x’ indicates an unused field. (d) Binary encoding. Each word of the binary is either the start of a
function, the start of an instruction, or an argument word in a let instruction. With no architecturally visible state, data is accessed with a scoped system
where the program identifies source and index; all data references use the same source/index pattern.

The case instruction provides pattern-matching for control flow. It takes a value, then makes a set of equality com-
parisons, one for each “pattern” provided. The first word of the case instruction indicates a piece of data to evaluate. As
we need an actual value, this is the point in execution that forces evaluation of structures created with let — how-
ever, it is evaluated only enough to get a value with which comparisons can be made; specifically, until it results in
either an integer or a constructor object.3 The words following the instruction encode patterns (pattern_literal and
pattern_cons) against which to match the case value. If the case value exactly equals the literal value or function (i.e.
constructor) identifier, execution proceeds with the next instruction; otherwise, it skips the number of words specified in
the pattern argument. A matching pattern_else is required for every case which will be executed when no other
matches are found (and demarcates the end of the case instruction encoding). Case/pattern sequences not adhering to the
encoding described are malformed and invalid — e.g., you cannot skip to the middle of a branch, or have a case without an
else branch.

The result instruction is a single word, indicating a single piece of data that the current function should yield. Every
branch of every function must terminate with a result instruction (disallowing re-convergent branches means the simple
pattern-skip mechanism is all that is necessary for control flow). Functions that do not produce a value do not make sense
in an environment without side effects, and so are disallowed. After a result, control flow passes to the case instruction
where the function result was required.

We realize that this is a departure from traditional hardware instructions and suggest reference to Fig. 3 to help ground
our descriptions in a concrete example. Fig. 3 shows a small function, map, written in high-level assembly, machine as-
sembly, and encoded as a binary. A more thorough description of the semantics of each of these instructions is found in
Section 5.

3.4. Built-in functions, I/O, and errors

ALU operations are, for the most part, already purely mathematical functions — they just map inputs to an output. The
Zarf functional ISA is built around the notion of function calls, so no new mechanism or instructions are needed to use the
hardware ALU. Invoking a hardware “add” is the same as invoking a program-supplied function. In our prototype, function
indices less than 256 (0x100) are reserved for hardware operations; the first program-supplied function, main, is 0x100,
with functions numbered up from there. During evaluation, if the machine encounters a function with an index less than
0x100, it knows to invoke the ALU instead of jumping to a space in instruction memory.

The only two functions with side-effects in the system, input and output, are also primitive functions. The input function
takes one argument (a port number) and returns a single word from that port; the output function takes two arguments, a
port and a value, and writes its result to the port, returning the value written. Since data dependencies are never violated
in function evaluation, software can ensure I/O operations always occur in the right order even in a pure functional environ-

3 More precisely, evaluation of that argument will always produce a result in Weak Head-Normal Form (WHNF), but never a lambda abstraction.
45

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
ment by introducing artificial data dependencies; this is the principle underlying the I/O monad [53,54], used prominently
in languages like Haskell.

In a purely functional system there are no side effects, and thus no notion of an “exception”. For program-defined
functions, this just requires that every branch of every case return a value (that value could be a program-defined error).
However, some invalid conditions resulting from a malformed program can still occur at runtime. To respect the purely
functional system, these must cause a non-effectful result that is still distinguishable from valid results. Our solution is
to define a “runtime error constructor” in the space of reserved functions. Every function, both hardware- and software-
defined, can potentially return an instance of the error constructor. The ISA semantics are undefined in these error cases,
because it’s very easy to avoid — compiling from any Hindley-Milner typechecked language will guarantee the absence of
runtime type errors [55,56].

4. System software

This section describes the software architecture across the two realms (functional and imperative) of the system, and
provides an overview of the ICD and the functional coroutines.

4.1. Functional vs. imperative

As our system is composed of two small and separate computational layers, the software is split across two different ISAs.
For existing applications, or applications prototyped for existing platforms, the decision of which components to migrate to
Zarf represents a trade-off of increased abstraction and verification capability for additional development effort and some
decrease in performance. Section 7 provides some quantitative worst-case bounds for this trade-off.

Zarf runs a small microkernel based on cooperative coroutines [57,58] to handle the scheduling and communication
of different software components. This allows us to more easily group and reason about code in terms of higher-level
behaviors — i.e., the small surface area of each coroutine means they can be considered (and occasionally verified) in
blocks, as collections of functions with a single specification and interface. The cooperative nature of the system is a design
choice that allows us to avoid interrupts, which would complicate proofs of a single coroutine’s behavior. Timing analysis
(section 6.2) ensures each coroutine always returns control.

Zarf enables reasoning about these coroutines at the assembly and binary level. Section 6 demonstrates different prop-
erties that can be verified. The integrity type system allows a developer to statically prove that a given set of coroutines
(and the microkernel itself) will execute in cooperation without one coroutine corrupting values important to another. This
composability of verification is extremely difficult on traditional architectures, as the global and mutable nature of all state
makes it quite easy for any software component to affect any other.

The imperative layer — which can be any embedded CPU, but for our purposes is a Xilinx MicroBlaze processor —
runs whatever pieces of the software are not placed on Zarf. This allows for monitoring software, low-level drivers, com-
munication protocols, and other complex, imperative code to exist and run without requiring modeling or pure-functional
implementations. As this area of the system is untrusted and unverified, anything on which the critical components depend
should be rewritten to run on Zarf.

In our sample application, three application coroutines are run on Zarf: one that handles the core ICD application, an
I/O routine that handles the timing of reading the values from the patient’s heart and outputting when shocks should
occur, and a routine that sends values to the monitoring software on the imperative layer. The system operates in real-
time, reading a single value from the heart, running ECG and ICD processing, and communicating the resulting value back
out. In our application, the monitoring software tracks the number of times treatment occurs, and, when prompted from
its communication channel, will output that number. This imperative software could be arbitrarily complex and handle
more complicated monitoring and diagnosis, communication drivers to communicate with the outside world, or other
features; as it is a standard imperative core, any embedded C code can be easily compiled for it with an off-the-shelf
compiler.

4.2. ICD

ICDs are small, battery-powered, embedded systems which are implanted in a patient’s chest cavity and connect directly
with the heart. For patients with arrhythmia and at risk for heart failure, an ICD is a potentially life-saving device. Currently,
the primary use of ICDs is to detect dangerous arrhythmias (such as ventricular tachycardia, or VT) and administer pacing
shocks (anti-tachycardia pacing, or ATP). These shocks help prevent the acceleration in heart rate leading to ventricular
fibrillation, a form of cardiac arrest.

From 1990 to 2000, over 200,000 ICDs and pacemakers were recalled due to software issues [2]. Between 2001 and 2015,
over 150,000 implanted medical devices were recalled by the FDA because of life-threatening software bugs [3]. However,
ICDs are credited with saving thousands of lives; for patients who have survived life-threatening arrhythmia, ICDs decrease
mortality rates by 20-30% over medication [59–61]. Currently, around 10,000 new patients have an ICD implanted each
month [62], and around 800,000 people are living with ICDs [63].
46

Fig. 4. The ECG takes input signals sampled at 200 Hz and filters them multiple times, after which the peaks are classified and the rate of heartbeat
determined. These values are fed to an ATP (antitachycardia pacing) procedure, which decides if ventricular tachycardia is occurring based on current and
previous heart rate, and administers pacing shocks to prevent acceleration and ventricular fibrillation (a form of cardiac arrest).

The core of our ICD is an embedded, real-time ECG algorithm that performs QRS4 detection on raw electrocardiogram
data to determine the timing between heartbeats. We work off of an established real-time QRS detection algorithm [64],
which has seen wide use and been the subject of studies examining its performance and efficacy [65]. An open-source
update of several versions of the algorithm [66] is available; we use the results of this open-source work as the basis of our
algorithm’s specification as well as the C alternative. After the ECG algorithm detects the pacing between heartbeats, the
ATP function checks for signs of ventricular tachycardia and, if found, administers a series of pacing shocks. We implement
the VT test and ATP treatment published in [67].

The I/O coroutine is passed the output of the previous iteration of the ICD coroutine. A hardware timer is used to ensure
that I/O events occur at the correct frequency. When the correct time has elapsed (5 ms), the I/O coroutine outputs the
given value and reads the next input value. It yields this value to the microkernel.

This input is then passed through to the ICD coroutine, which implements a series of filter passes to detect the spacing
between QRS complexes (Fig. 4 illustrates the ECG filter passes). If 18 of the last 24 beats had periods less than 360 ms
(corresponding to a heart rate greater than 167 bpm), the ICD coroutine moves into a treatment-administering state, where
it outputs three sequences of eight pulses at 88% of the current heartrate, with a 20 ms decrement between sequences. This
is designed to prevent continued acceleration and restore a safe rhythm.

The monitoring software, which runs on the MicroBlaze, receives the output of the ICD coroutine each cycle. A command
can be given on the diagnostic input channel for the software to output the number of times treatment has occurred.

I/O events occur at a fixed frequency of 200 Hz. Timing analysis in Section 6.2 confirms that, after an input event, the
entire cycle of each coroutine running and yielding, including garbage collection, is able to conclude well within the 5 ms
window, meaning that the entire system is always able to meet its real-time deadline.

5. ISA semantics

Zarf has the core goal of providing concise, mathematical semantics for its hardware ISA. These can be found in Fig. 5,
which gives the complete ISA behavior using a big-step semantics, explaining how each instruction reduces to a value.
This semantics uses eager evaluation for simplicity; though the current hardware implementation uses lazy semantics,
the difference is not observable in our application because I/O interactions are localized to a specific function and always
evaluated immediately.

The semantics are discussed in more detail in the following subsections. Note that terms introduced in the abstract
syntax (Fig. 2) are used in the semantics. Each rule (or helper function (Fig. 6)) is applicable in a different case, depending
on what is under evaluation; the scenarios are all mutually exclusive, meaning that there is always exactly one rule that
can (and should) be applied at every step.

4 The “QRS complex” is made up of the rapid sequence of Q, R, and S waves corresponding to the depolarization of the left and right ventricles of the
heart, forming the distinctive peak in an ECG.
M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
47

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61

c ∈ Constructor = Name × −−→
Value clo ∈ Closure = (λ�x.e) × −−→

Value

v ∈ Value =Z � Constructor � Closure ρ ∈ Env = Variable → Value

� e ⇓ v

� −→
decl fun main = e ⇓ v

(program) v = ρ(arg)

ρ � result arg ⇓ v
(result)

�v1 = ρ(
−→arg) v2 = applyCn(cn,�v1) ρ[x �→ v2] � e ⇓ v3

ρ � let x = cn −→arg in e ⇓ v3
(let-con)

fn /∈ {getint,putint} fun fn �x2 = e2 ∈ −→
decl

�v1 = ρ(
−→arg) v2 = applyFn((λ�x2.e2, []),�v1,ρ) ρ[x1 �→ v2] � e1 ⇓ v3

ρ � let x1 = fn −→arg in e1 ⇓ v3
(let-fun)

v1 = ρ(x2) �v2 = ρ(
−→arg) v3 = applyFn(v1,�v2,ρ) ρ[x1 �→ v3] � e ⇓ v4

ρ � let x1 = x2
−→arg in e ⇓ v4

(let-var)

�v1 = ρ(
−→arg) v2 = applyPrim(op, �v1) ρ[x �→ v2] � e ⇓ v3

ρ � let x = op −→arg in e ⇓ v3
(let-prim)

(cn, �v1) = ρ(arg) (cn �x ⇒ e1) ∈ −→
br ρ[�x �→ �v1] � e1 ⇓ v2

ρ � case arg of
−→
br else e2 ⇓ v2

(case-con)

n = ρ(arg) (n ⇒ e1) ∈ −→
br ρ � e1 ⇓ v

ρ � case arg of
−→
br else e2 ⇓ v

(case-lit)

((cn,
−→v1) = ρ(arg) (cn �x ⇒ e1) /∈ −→

br) ∨ (n = ρ(arg) (n ⇒ e1) /∈ −→
br)

ρ � e2 ⇓ v2

ρ � case arg of
−→
br else e2 ⇓ v2

(case-else)

n2 is input from port n1

ρ[x �→ n2] � e ⇓ v

ρ � let x = getint n1 in e ⇓ v
(getint)

n1 is a port
n2 = ρ(arg) ρ[x �→ n2] � e ⇓ v

ρ � let x = putint n1 arg in e ⇓ v
(putint)

Fig. 5. Big-Step Semantics for Zarf’s functional ISA. Our semantics is a ternary relation on an environment; a let, case, or result expression; and the value
to which this expression evaluates. Evaluation begins with the main function’s body. ρ[x �→ v] returns an updated copy of the environment with x mapped
to v . getint gets an integer from a specified port, and putint puts an integer onto a specified port; both are the only mechanisms for I/O in the system.

applyFn((λ�x1.e, �v1),�v2,ρ)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v if |�v2| = 0, |�v1| = |�x1|, and ρ[�x1 �→ �v1] � e ⇓ v

(λ�x1.e, �v1) if |�v2| = 0 and |�v1| < |�x1|
applyFn((λ�x1.e, �v1 :+ hd(�v2)),tl(�v2),ρ) if |�v2| > 0 and |�v1| < |�x1|
applyFn((λ�x2.e′, �v3),�v2,ρ) if |�v2| > 0, |�x1| = |�v1|, and ρ[�x1 �→ �v1] � e ⇓ (λ�x2.e′, �v3)

applyCn(cn,�v)=
{

(cn, �v) if (con cn �x) ∈ −→
decl and |�v| = |�x|

(λ�x.let c = cn �x in result c, �v) if (con cn �x) ∈ −→
decl and |�v| < |�x|

ρ(arg) =
{

n if arg = n

v if arg = x and (x �→ v) ∈ ρ

applyPrim(op, �v1)=
{

v if |�v1| = arity(op) and v = eval(op, �v1)

(λ�x1.let x2 = op �x1 in result x2, �v1) if |�v1| < arity(op) and |�x1| = arity(op)

Fig. 6. Big-Step Semantics Helpers for Zarf’s functional ISA. applyFn (applyCn) performs function (constructor) application. �x : +y appends y to the
end of �x, creating a new list. |�x| means length of the list �x. eval returns the value of applying a primitive operation to arguments. Because functions are
lambda-lifted, our version of closures track the list of values to be applied upon saturation, rather than an entire environment like normal closures.
48

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
5.1. Names and programs

A Constructor is a unique name and a list of zero or more values. Constructors serve as software data types, as
a simple system for building up more complex data objects. The name indicates the “type” of the constructor, encoded
statically as a unique integer, which the machine uses at runtime to distinguish constructors of different types.

A Closure is a function object, tying a function to a list of zero or more values, which are the arguments that have
already been supplied. Closures allow for the dynamic construction of function objects from statically defined functions:
e.g., applying the argument 1 to the static binary function add creates a new closure, which expects one argument, that
performs the function λx.x + 1.

A Value is either an integer, a constructor, or a closure. The machine uses one bit at runtime to track which values are
primitives and which are objects (either constructors or closures), and identifies constructor types with their name (unique
type integer), but is otherwise untyped.

An Environment is a semantic entity mapping variables (local names) to values (integers, constructors, and closures).
The semantics are high-level and do not specify how the machine should implement the behavior of the environment, but
function arguments and local variables fall into the environment of each function. The set of functions (declared at the top
level) are stored in a list of declarations

−→
decl, which is essentially a map from the function’s name to its parameter list and

body.
The PROGRAM rule states that there should be a set of zero or more function and constructor declarations, and one

function main with a body expression e. Given the declarations and main function, and application of the semantic rules,
we can reduce e to a value.

5.2. Result

The RESULT rule states that, given the current function environment and a result instruction with argument arg , we
can reduce the current function execution to a single value v using the environment to look up arg , if arg is a variable, or
simply returning it, if arg is a number.

5.3. Let

A let instruction will be reduced using one of four rules: LET-FUN, LET-CON, LET-VAR, or LET-PRIM. The first
is used for static program function application; i.e., applying arguments to a program-defined function (which excludes
I/O and hardware functions). Similarly, the second is used for static constructor application; i.e., applying arguments to a
program-defined constructor. The third is used to apply arguments to a runtime value, which will be a closure expecting
additional arguments. The final is application on primitive (hardware ALU) functions. I/O functions (getint and putint)
have separate rules.

LET-FUN is used when the instruction under evaluation is a let instruction applying zero or more arguments to a
program-defined function f n. Its premises state that the function should not be getint or putint, that the function
should be defined in the program declarations, that the arguments should all be reducible to a sequence of values −→v1
using the current function environment, that application of the applyFn helper rule on the body of f n with arguments −→v1 will result in a value v2, and finally, that binding a new local variable to v2 will allow us to reduce the remainder
of the instructions in the current function to a value.5 The final premise of the rule (ρ[x1 �→ v2] � e1 ⇓ v3) continues the
execution: e1 is the remainder of the instructions, where the environment now includes a mapping from x1 to the newly
calculated value v2. A premise of this format occurs in every rule for non-terminal instructions (everything but PROGRAM
and RESULT); the semantics treat the instructions as recursive, such that each instruction “points” to the rest of the
instructions.

The premises for LET-CON are very similar to those of LET-FUN, with the primary difference coming in applyCn.
While function applications can be oversaturated, we disallow oversaturation of constructor applications for simplicity; we
haven’t found this overly restrictive at all in practice. Otherwise, the rules behave similarly, storing the value that results
from applying arguments to a constructor into the environment ρ before continuing to evaluate the next expression e to a
value v3. In this way, closures and constructors are structurally the same; both are function identifiers with a sequence of
arguments. The difference is that closures are already fully evaluated.

LET-VAR is used when a let instruction applies arguments to a dynamic (runtime) value x2. The premises state that
x2 should be reducible via the environment to a value v1, that the sequence of arguments are reducible to a sequence of
values −→v2 , that applying the arguments −→v2 to the object v1 with the applyFn operation will result in a value v3, and that
binding a local variable to that value will allow us to reduce the remainder of the instructions to a value. The applyFn is

5 As these are Big-Step semantics, rules indicate how expressions reduce directly to values, rather than giving step-by-step instructions for performing
the reduction. In evaluating LET-FUN, for example, the rule does not instruct you to “call” into the indicated function, but rather just states that the
function reduces to a value (as it must, eventually), then uses the value; as we are writing mathematical expressions, the reduction is assumed to occur
immediately. One can still “execute” the semantics by stepping through, evaluating operands as necessary using the rules in places that the semantics
simply reduce immediately to a value.
49

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
written to only accept closures as its first arguments; in calling it, there is an implicit premise that v1 is a closure object.
x2 reducing to any other type of value (an integer or constructor) is a runtime error, and can occur only if the program is
not well-typed.

LET-PRIM is similar to LET-FUN, but is used only when the static function is a primitive operation. These functions
must be treated differently because there is no program definition for add, or sub, or mult; during machine execution,
the hardware ALU handles them. The semantics define ALU operations the same way as the machine (as 32-bit modular
mathematical operations). The premises of LET-PRIM contain no function declaration; in addition, they invoke applyPrim
instead of applyFn. Otherwise, the application is similar: the function call reduces to a value, and binding that value to a
local variable will allow us to reduce the remainder of the instructions in the function under evaluation.

5.4. I/O

GETINT is the rule for the hardware-defined input function; it is invoked when a let instruction uses getint in a
program, which takes a single argument n1. The premises state that reading a value from port n1 should return an integer
n2; binding that value to a local variable, we can proceed with evaluation.

PUTINT is the rule for the output function (also hardware-defined); it takes two values: a port number n1, and an arg
that should be output. The premises use the environment to reduce arg to a value; not stated (as it is a side effect) is
that the hardware sends this integer value to the indicated port. The integer sent is also used as the value to which the
instruction reduces, so it is bound to a local variable, and evaluation proceeds.

5.5. Case

We use two rules for the evaluation of case instructions (CASE-CON and CASE-LIT, for constructor and integer scruti-
nees, respectively); in addition, the rule CASE-ELSE handles the “else” branch for each of the two case varieties.

These CASE rules are invoked when a case instruction is under evaluation; which rule is used depends on what the
scrutinee reduces to: if it is a constructor, CASE-CON is used, while CASE-LIT handles integers. A case instruction
includes a series of zero or more branches, each of which has a constructor name or integer as a guard, and one else
branch. Exactly one branch will always execute. Since constructor “names” become unique integers, constructor and integer
matches must be encoded differently to distinguish which variety each branch is meant to match.

The first premise of CASE-CON indicates that the scrutinee arg must reduce to a constructor; the second says to take
the expression from the branch with the matching constructor name and use that for the remainder of the function, which
will reduce to a value. CASE-LIT is similar, but requires the arg to reduce to an integer, and takes the expression from the
branch that attempts to match exactly that integer.

The CASE-ELSE rule is invoked when no matching branch is found for the case instruction (indicated in the disjuncted
premises); there, it indicates to take the expression from the else branch in the instruction and use that for the remainder
of the function.

5.6. apply helper functions

applyFn is perhaps the most complicated rule, because it is where currying is handled — different actions must be
taken if too few, too many, or just enough arguments are supplied to a function application. The helper rule takes a closure
and a list of zero or more values, which will be arguments to the closure.

1. If zero arguments are supplied, and there are exactly enough values already saved and ready to be applied in the
closure, then simply feed those values as the arguments to the function, reducing the function body to a value, and
return that.

2. If zero arguments are supplied, and there are not enough saved values in the closure, return the same closure.
3. If at least one argument is supplied, and there are not enough saved values in the closure, recursively call into ap-
plyFn, taking the first argument from the list and appending it to the list of saved values. Either the argument list will
run out before the function is saturated (resulting in case 2), or the function will eventually be saturated (resulting in
case 1 or 4).

4. If at least one argument is supplied, and there are exactly enough saved values already in the closure, then we evaluate
the closure (which must, if the program is well-typed, result in another closure), then recursively call applyFn with
the new closure and the same argument list.

applyCn handles applications of arguments to constructors. The first rule is if exactly enough arguments are applied to
the constructor application; in that case, a constructor containing those values is built and returned. The second handles the
case where fewer values were supplied than expected (partially saturating a constructor); in this case, a closure is returned
to capture the values already supplied, and when additional values are applied, it will invoke applyCn again to check if
the constructor has all fields necessary to be built. We note that this appears to be dynamically creating syntax (the rule
50

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
Fig. 7. Extraction of verified application components, summarized for a small excerpt. (a) The high-level Coq specification is written to operate on Streams
(infinite lists); values are pulled from the front of the stream. (b) An intermediate version is written in Coq which operates on integers instead of streams,
and unfolds nested operations so each function call and arithmetic operation takes one line. This intermediate version is proven equivalent in Coq to the
high-level specification — meaning that repeated recursive application of (b) will always output the same sequence of values as (a). (c) A simple extractor
just replaces the keywords in (b) to produce valid assembly code that can run on Zarf.

indicates placing a let instruction into the created closure), but as every constructor has a finite number of fields, these
functions are all known statically.

applyPrim handles evaluation of primitive operations. The first case is invoked when the correct arguments have
been supplied for that particular operation, and simply evaluates the operation according to the rule for 32-bit modular
arithmetic, returning the answer. Similar to applyCn, we must account for the case where the function did not receive
enough arguments; as there, we create a new closure to capture the arguments supplied, and the operation can be evaluated
once all arguments are received (the second case).

The ρ(arg) = ... helper function is for convenience, simply stating that if arg is an integer, return that value; otherwise,
it must be a name mapped to some value in the environment, in which case that value should be returned.

6. Verification

We separate the verification of the embedded ICD application into three parts: verification of the correctness of the
ICD coroutine, a timing analysis to show that the assembly meets timing requirements in the worst case, and a proof of
non-interference between the trusted ICD coroutine and untrusted code outside of it.

6.1. Correctness

We first implement a high-level version of the application’s critical algorithms (the ECG filters and ATP procedure)
in Gallina, the specification language of the Coq theorem prover [68], using this version as our specification of functional
correctness. This specification operates on streams — a datatype that represents an infinite list — by taking a stream as input
and transforming it into an output stream. By sticking to a high-level, abstract specification, we can be more confident that
we have specified the algorithm correctly. An ICD implementation cannot operate on streams, as all data is not immediately
available; instead, it takes a single value, yields a single value, and then repeats the process.

The form of the correctness proof is by refinement: first, we create a Coq implementation of the ICD algorithm that is
“lower-level” than the Coq specification. This lower-level implementation operates on machine values rather than streams,
isolates function applications to let expressions, and avoids the use of “if-then-else” expressions, among other trivially-
resolved differences. We then create an extractor that converts this lower-level Coq code directly into executable Zarf
functional assembly code (see Fig. 7). If, for all possible input streams, we can prove that the output stream produced
by the high-level Coq specification is the same sequence of values produced by the lower-level implementation, we can
conclude that the program we run on Zarf is faithful to the high-level Coq specification. This proof of equivalence between
the two Coq implementations is done by induction and coinduction over the program, showing that if output has matched
up to point N , and the computation of value N is equivalent, then value N + 1 will be equivalent as well. As compared
to extracting for an imperative architecture, we avoid needing to compile functional operations to an imperative ISA and
do not require a large software runtime — or any software runtime at all. The translation simply replaces Coq keywords
with Zarf assembly keywords, which is possible because the low-level Coq specification is in the A-normal form that Zarf
requires. For example, the Coq keyword CoFixpoint would be textually replaced with fun, match replaced with case,
etc.
51

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
We begin constructing our proof by first defining the relevant datatypes and expressions of the ISA as inductively defined
mathematical objects:

We’re then able to define a small interpreter that executes the instruction semantics (several constructors have been
omitted for brevity and clarity of presentation):

The zarf_run_function’ interpreter is made up of several cases, each of which correspond to rules in the big-step
semantics defined in Fig. 5. For example, the first case, H_apply’, defines what function application means. It says that if
we add a thunk to our local environment that is the result of executing the apply operation (locals + execApply x
ys args locals caseVal), and then execute the rest of the instructions zs, we have successfully executed an apply
statement followed by the rest of the instructions zs.

We declare several axioms asserting the correctness of the ISA’s built-in functions and their equivalence to built-in Coq
operations. These built-in functions (like add, multiply, etc., labeled PrimOp in Fig. 2) are ultimately the base operations
employed by all user-defined functions, and we reference them during the proof of correctness of the higher-level ECG
algorithms later on. We also define a few axioms related to list and pair construction, whose correspondence to the user-
made Zarf function equivalents are trivial. Here are a few assorted examples:
52

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
We can then begin defining and proving things about non-builtin functions, like append, reverse, index, and various
matrix multiplication operations. Here’s an example of defining the simplest user-defined function, id, which is used often
in Zarf assembly for assigning a constant numeric value to a variable (because let expressions purely operate over function
identifiers (see Fig. 2)). Proof bodies are omitted for brevity:

We then proceed to define several ECG helper functions, like the low pass filter, at both a high-level stream-based
abstraction and the lower-level implementation which operates on machine values, and verify their equivalence (and thus
the correctness of the machine’s implementation of the specification):

After we’ve proven the same_low_pass_filter_rec_and_rec2 theorem, we can convert the low-level low pass
filter implementation directly into Zarf assembly. In this example, the assembly version of low_pass_filter_rec2
would look like:
53

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
The preceding snippets of code have been just a sample of the entire set of proofs we wrote. The full proofs of cor-
rectness of the assembly-level critical ECG and ATP functions take under 2,500 lines of Coq. The implementations are
converted line-for-line into Zarf assembly code, which is combined with assembly for the microkernel and other corou-
tines.

In total, the Trusted Code Base for the correctness proof includes: the hardware, the Coq proof assistant, and the small
extractor that converts the low-level Coq code into Zarf functional assembly code. All other code is untrusted and may be
incorrect, and the proof will still hold. The high-level ISA and clearly-defined semantics make this very small TCB possible,
allowing the exclusion of language runtimes, compilers, and associated tooling that is frequently present in the TCB in
verification efforts.

6.2. Timing

With a knowledge of how the Zarf hardware executes each instruction, we create worst-case timing bounds for each
operation. In general, in a functional setting, unbounded recursion makes it impossible to statically predict execution time
of routines. Though our application uses infinite recursion to loop indefinitely, the goal is to show that each iteration of
the loop meets the real-time deadline; within that loop, each coroutine is executed only once, and no functions call into
themselves. This allows us to compute a total worst-case execution time for the sum of all the instructions by extracting
the worst-case route through the hardware state machine to execute each possible operation. For example, applying two
arguments to a primitive ALU function and evaluating it has a maximum runtime of 30 cycles — this includes the overhead
of constructing an object in memory for the call, performing a function call, fetching the values of the operands, performing
the operation, marking the reference as “evaluated” and saving the result, etc. In an average case, only a fraction of the
possible overhead will actually be invoked (see section 7 for CPI averages).

Hardware garbage collection is a complicating factor on timing. GC can be configured to run at specific intervals or
when memory usage reaches a certain limit; for our application, to guarantee real-time execution, the microkernel calls
a hardware function to invoke the garbage collector once each iteration. To reason about how long the garbage collection
takes, we bound the worst-case memory usage of a single iteration of the application loop. The hardware implements a
semispace-based trace collector, so collection time is based on the live set, not how much memory was used in all. For the
trace-collector state machine, each live object takes N+4 cycles to copy (for N memory words in the object), and it takes
2 cycles to check a reference to see if it’s already been collected. We bound the worst-case by conservatively assuming
that all the memory that is allocated for one loop through the application might be simultaneously live at collection time,
and that every argument in each function object may be a reference which the collector will have to spend 2 cycles
checking.

From the static analysis, we determine that the worst execution of the entire loop is 4,686 cycles, not including garbage
collection. Garbage collection is bounded by a worst-case of 4,379 cycles, making a total of 9,065 cycles to run one iteration
of system — or 181.3 μs on our FPGA-synthesized prototype running at 50 MHz, falling well-within the real-time deadline
of 5 ms.

6.3. Non-interference

Because the ICD coroutine has been proven correct (Section 6.1), we treat its output as trusted. This output must then
travel through the rest of the cooperative microkernel until it reaches the outside world via the I/O coroutine’s putint
primitive. In order to guarantee the integrity of this data (meaning it is never corrupted nor influenced by less-trusted
data), we rely on a proof of non-interference. Non-interference means that “values of variables at a given security level
� ∈L can only influence variables at any security level that is greater than or equal to � in the security lattice L” [69]. In a
standard security lattice, L (low-security) � H (high-security), meaning that high-security data does not flow to (or affect)
low-security output. In our application, however, we are concerned with integrity; our lattice is composed of two labels, T
(trusted) and U (untrusted), organized such that T � U. Therefore, our integrity non-interference property is that untrusted
values cannot affect trusted values [11].

To prove this about Zarf, we create a simple integrity type system that provides a set of typing rules to determine and
verify the integrity type of each expression, function, and constructor in a program. After providing trust-level annotations
in a few places and constraining the normal Zarf semantics slightly to make type-checking much easier, we can run a type-
checker over the resulting Zarf code to know whether it maintains data integrity. We extend the original Zarf syntax to
allow for these type annotations, as follows:
54

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
�,pc ∈ Label ::= T | U τ ∈ Type ::= num� | (cn, �τ) | (�τ → τ)

� ∈ Env = Identifier → Type

�[i1 �→ τ1, . . . , in �→ τn] � e :τ
� � (fun fn i1 :τ1, . . . , in :τn :τ = e):(τ1, . . . , τn)→ τ

(func)

τ1 = �(id) −→τ2 = �(−→arg) τ3 = applyType(τ1,
−→τ2) �[x �→ τ3] � e :τ4

� � let x = id −→arg in e :τ4
(let)

(cn, �τ1) = �(arg) (cn �x ⇒ e1) ∈ −→
br �[�x �→ �τ1] � e1 :τ2

� � case arg of
−→
br else e0 :τ2

(case-cons)

num� = �(arg) � � e1 :τ1 . . . � � en :τn � � e0 :τ0

τ = (τ0 � τ1 � . . . � τn) • �

� � case arg of n1 ⇒ e1 . . . nn ⇒ en else e0 :τ (case-lit)

τ = �(arg)
� � result arg :τ (result)

�[x �→ numT] � e :τ
� � let x = getint n in e :τ (getint)

num� = �(arg) �[x �→ num�] � e :τ
� � let x = putint n arg in e :τ (putint)

Fig. 8. Integrity Typing Rules. A type is inductively defined as either a labeled number, a singleton constructor, or a function constructed of these types.
The type environment maps variables, function, and constructor names to types. Since all functions are annotated with their types, type checking proceeds
by ensuring that the return type of a function is the same as the type deduced by checking the function’s body expression with the function’s parameter
types added to the type environment. � denotes the join of two types, and • denotes the joining of a type’s integrity label with another.

�,pc ∈ Label ::= T | U

τ ∈ Type ::= num� | (cn, �τ) | (�τ → τ)

func ∈ Function ::= fun fn x1 :τ1, . . . , xn :τn :τ = e

cons ∈ Constructor ::= con cn x1 :τ1, . . . , xn :τn

Specifically, following the spirit of Abadi et al. [6] and Simonet [70], types are inductively defined as either labeled
numbers, or functions and constructors composed of other types. Our proof of soundness on this type system follows the
approach done in work by Volpano et al. [7]. We show that if an expression e has some specific type τ and evaluates to
some value v , then changing any value whose type is less-trusted than e’s type results in e evaluating to the same value v;
thus, we show that arbitrarily changing untrusted data cannot affect trusted data. We prove soundness case-wise over the
three types of expressions in our language, combining our evaluation semantics with our security typing rules.

6.3.1. Integrity type system
The integrity type system is found in Fig. 8, with its helper functions found in Fig. 9. Our integrity lattice is composed

of two elements, T and U (trusted and untrusted, respectively), such that T < U (opposite of a normal security lattice). We
extended the Zarf ISA by requiring function and constructor type annotations. Constructors, which previously were untyped,
are now singleton types: each constructor declaration defines a type, but that constructor is the sole inhabitor of the type.
This restriction eliminates case expressions as sources of control flow when casing on a constructor type (since we know
statically that the case expression’s scrutinee will be a single unique value, and therefore also statically know which branch
will be taken); note that this also eliminates the consideration of the else branch in a case expression on a constructor type.
Instead, case expressions in this lightly-typed Zarf are solely for binding a constructor’s internal values to variables (via
deconstruction). Though this causes a loss in expressive power in the general case (constructors must be singleton types),
our microkernel was designed without the need for this type of control flow.

case expressions whose scrutinee is a number, however, still allow for control flow (since the value of an num is not
known ahead of time); therefore, the type of this form of case expression is the join of all of its branch types. The type of
the scrutinee, which is significant in a security analysis, is here irrelevant — there are no implicit flows for integrity. Because
we do not use union types, another small restriction we enforce is that each branch in a case expression must result in the
same base type (i.e. all must either type-check to a num, (cn, �τ), or �τ → τ), such that we may join them together properly
(see Fig. 10).
55

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
applyType((�τ1 → τ),�τ2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ if | �τ1| = 0 and | �τ2| = 0

(�τ1 → τ) if | �τ1| > 0 and | �τ2| = 0

applyType(�τ3 → τ,�τ4) if �τ1 = τ1 :: �τ3, �τ2 = τ2 :: �τ4, and τ2 ≤ τ1

applyType(�τ3 → τ4,�τ2) if | �τ1| = 0, | �τ2| > 0, and τ = (�τ3 → τ4)

�(n) = numpc �(id) =

⎧⎪⎨
⎪⎩
(�τ → (cn, �τ)) if id = cn and con cn �x: �τ ∈ −→

decl

(�τ → τ) if id = fn and fun fn �x: �τ :τ = e ∈ −→
decl

τ if id = x and (x �→ τ) ∈ �

Fig. 9. Integrity Typing Rules Helpers. � is a helper function that gets the type of an argument, and applyType applies a function type to argument types.
Applying a helper function that takes one argument to a list of arguments is shorthand for mapping that function over the list.

num� � num�′
= num���′

(cn, �τ) � (cn, �τ) = (cn, �τ)
(�τ → τ) � (�τ ′ → τ ′) = (�τ � �τ ′ → τ � τ ′)

num� • �′ = num���′

Fig. 10. Joining Two Types. The • operator is used to join a type’s label with another label; if the type that the label is being joined with is not a num,
the label will be joined with each of the type’s inner types until a base num is reached. Joining two lists of types is equal to the pairwise join of their
elements. Constructor join is trivial because constructors are singletons whose type never changes, and only equal constructors can be compared.

� � �′

num� ≤ num�′ (num)
�τ ′ ≤ �τ τ ≤ τ ′

(�τ → τ)≤ (�τ ′ → τ ′)
(func)

(cn, �τ)≤ (cn, �τ) (cons)
τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3
(tran)

Fig. 11. Subtyping Rules. One type is a subtype of another if their base types are equal and, in the case of the base num type, the first’s label is lower in
the integrity lattice than the other. A list is a subtype of another if pairwise each element of the first is a subtype of the corresponding element in the
other list.

The integrity label associated with a num depends on the integrity level of the code that created it: untrusted code
can only create numbers of type numU , while trusted code can create trusted numbers (which can be treated as untrusted
numbers via subtyping; see Fig. 11). Primitive operations (add, subtract, etc.) are treated as named functions contained
within the set of declarations

−→
decl. The type of primitive operators is dependent on the trust level of the caller: for example,

the type of add is num�1 → num�2 → num�1��2�pc , where pc represents the trust level of the current program location (we
assume its value can be tracked and changed outside of the type system proper). This all implies that untrusted code cannot
use the primitive operations to create any type of trusted value (regardless of the types of the numbers an untrusted caller
uses), thus restricting untrusted code’s ability to obtain trusted values to (1) the getint function (which in our application
is data straight from the heart monitor) and (2) by calling trusted functions which return trusted values.

This system will verify integrity for a value with singular endpoints — i.e., for the code being checked, it is received at
one point and sent at one point. More complex annotations and treatment of values, like an arbitrary number of mutually
untrusted but critical values passing through an arbitrary number of trusted and untrusted regions, can be guaranteed with
this type-system via piecewise checking. By guaranteeing each link in the chain one-at-a-time, the integrity of the chain is
verified.

The soundness proof of the integrity type system proceeds by cases on the three forms of expressions.

Lemma 1 (Case expression soundness). If ∀x e0 e1 arg1 arg2 τ0 τ1 cn1 �τ1 v1 v2 ρ �, where

1. e0 = (case arg1 of
−→
br else e1)

2. � � e0 :τ0 ∧ ρ � e0 ⇓ v1 ∧ ρ(x) = arg1
3. � � arg2 :τ1 ∧ τ1 > τ0 ∧ ρ � arg2 ⇓ v2

then ρ[x �→ v2] � e0 ⇓ v1 .

Proof. 1. If � � arg1 :num� , then ∀n e2 . . . em , e0 = (case n of n2 ⇒ e2 . . . nm ⇒ em else e1), and either � = T or � = U.
We show that regardless of arg2’s level when it is of type num, it cannot be changed and therefore e0’s value doesn’t
change.
(a) If ∃�1 ∈ τ0 s.t. �1 = T, then by typing rule case-lit and the rule for join, n’s integrity label is T. Therefore, arg1

cannot both equal n and be arbitrarily changed to some expression arg2 because it is not an expression whose type
56

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
label is less trusted than the type of the entire expression (i.e. numT �≥ τ0). Thus we cannot replace arg1 with arg2,
so in this case the value of e0 remains the same, as desired. Since e1 through em+1 are expressions whose soundness
with respect to the type system can be considered separately through Lemmas 1, 2, and 3, we do not consider them
here.

(b) If ∃�1 ∈ τ0 s.t. �1 = U, then by our definition of the T − U integrity lattice, there can be no values whose type is
greater than τ0 (arg1 included) that we can change. Therefore, e0 remains unchanged, satisfying our conclusion.

2. If � � arg1 :(cn, �τ1), then ∀cn3 . . . cnn �x3 . . . �xn e3 . . . en ,
e0 = (case (cn, �τ1) of cn3 �x3 ⇒ e3 . . . cnn �xn ⇒ en else e1).
• We know by the operational semantics (restricted to accommodate this type system, with singleton constructor types)

that which branch we case on is determined entirely by the constructor that arg1 evaluates to, and not the values
contained within that constructor. Therefore, changing the expressions within any constructor will result in the same
branch being taken, such that e0 evaluates to the branch’s right-hand-side expression. Therefore, we cannot choose
to replace arg1 with another arbitrary arg2 when � � arg1 :(cn, �τ1).

• Let (cn3 �x3 ⇒ e3) be the matching branch (where cn = cn3). Based on the previous bullet point, we know that
changing the expressions of any other branches will not change the value of the entire case expression, so we focus
on this particular branch as an example. We must show that ∀τ3, ∃x3 ∈ �x3 s.t. � � x3 :τ3 > τ0, changing the value that
x3 maps to in ρ does not change the value that e3 evaluates to; that is, ρ[x3 �→ v3] :e3 ⇓ v , where ρ(arg2) = v3. Since
e3 is an expression, its soundness is either covered by Lemma 1 (by induction) or Lemmas 2 or 3. �

Lemma 2 (Result expression soundness). If ∀x e0 arg1 arg2 τ1 τ2 v1 ρ �, where

1. e0 = (result arg1) ∧ ρ � e0 ⇓ v1
2. � � arg1 :τ1 ∧ arg2 = ρ(arg1)

3. ρ � arg2 :τ2 ∧ τ2 > τ1 ∧ ρ � arg2 ⇓ v2

then ρ[(x �→ v2)] � e0 ⇓ v1

Proof. The result expression is used for wrapping a value into a single expression containing that value. Therefore, changing
the value of arg1 to arg2 would change the resultant value v1 that e0 is given, contradicting our result. As another point,
by the typing rule result, result’s type is precisely the type of arg1, meaning there are no values within e0 to change that
would not cause us to violate (3) above. Therefore, the value of arg1 must equal the value of arg2 such that value of e0
cannot change. �
Lemma 3 (Let expression soundness). If ∀e0 e1 x id arg1 arg2

−−→arg3
−→arg4 τ1 τ2 v1 v2 v3 �v3 �v4 v5 ρ �, where

1. e0 = (let x = id −→arg3 in e1)

2. � � e0 :τ1 ∧ ρ � e0 ⇓ v1
3. � � id: �τ → τ
4. ρ(

−→arg3) = �v3
5. �(arg1) = τ2 ∧ τ2 > τ1
6. arg0 ∈ −→arg3 ∧ −→arg4 = −→arg3 − arg0 + arg1
7. ρ(

−→arg4) = �v4
8. (id ∈ −−→cons ∧ applyCn(id,�v3)= v2) ∨ (applyFn(id,�v3,ρ)= v2)

9. (id ∈ −−→cons ∧ applyCn(id,�v4)= v3) ∨ (applyFn(id,�v4,ρ)= v3)

10. v2 = v3
11. ρ[x �→ v3] � e1 ⇓ v5

then v1 = v5 .

Proof. By cases on id:

1. If id is a primitive function (add, multiply, etc.), then v2 �= v3 ⇐⇒ −→arg3 �= −→arg4. By the typing rule of primitives, the
type τ that the function returns is the least upper bound of all of its arguments, including arg1, meaning by definition,
both the value and type of the primitive operation are entirely dependent on all arguments. Therefore, there cannot
exist an arg2 that allows us to substitute it for arg1 whose type is less trusted than τ without changing the entire value
v1.

2. If id is a constructor, then id has the type −→τ → (cn, �τ). id’s return type is determined statically and does not change
throughout program execution. Therefore, there does not exist a subexpression in −−→arg3, or more generally, in e0, that
can be changed without changing the type of the constructor, which would contradict our having the same values after
evaluation.
57

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
3. If id is a non-recursive function composed solely of case and result expressions and applications of primitive functions
and constructors used in let expressions, then by (1), (2), Lemmas 1 and 2 and induction on Lemma 3, we know id
must be sound. By extension, if id calls a function that fulfills these requirements, one can unfold the called function’s
contents in order to see that the resultant value v2 satisfies this case.

4. If id is a recursive function or calls a function which calls id (i.e. mutual recursion), it is possible that the function
call never terminates and therefore never results in a single value. The soundness of e0 must then be guaranteed via
induction on possible expressions, proven in the previous lemmas. We know statically that the type of id is of the form
�τ → τ , so we are guaranteed via simplification rules in the apply helper functions that types of −→arg3 must be equal
to or subtypes of �τ , or otherwise our operational semantics would get stuck. By induction, any recursive calls made in
e1 must also satisfy this lemma, meaning that the actual arguments −→arg3 are used properly, otherwise e0 wouldn’t type
check to type τ1 by getting stuck.

By proving that v2’s value does not change when less-trusted values change, we can safely continue with the evaluation
of e1, which will be a case, result, or let, all of which are handled in Lemma 1, Lemma 2, and Lemma 3, respectively. �
Theorem 1 (Integrity type system soundness). Our integrity type system is sound if, given some expression e of type τ which evaluates
to some value v, we can show that we can arbitrarily change any (or all) expressions in e which are less trusted than τ so that e still
evaluates to v; i.e., untrusted data does not affect trusted data.

Formally, if ∀e1 e2 e3 e4 τ1 τ2 τ3 v ρ �, where

1. ρ � e1 ⇓ v ∧ � � e1 :τ1
2. e2 ∈ subexprs(e1) ∧ � � e2 :τ2 ∧ τ2 > τ1
3. � � e3 :τ3 ∧ τ3 ≥ τ2

then ρ � e1[e3/e2] ⇓ v

Proof. There are just three types of expressions: let, case, and result. By Lemma 1, we show that case expressions (the
vehicle for control-flow) are sound. By Lemma 2, we show that result expressions are sound. Likewise, by Lemma 3, we
show that let expressions (the vehicle for function application) are sound. Thus, we have exhaustively shown soundness of
all expressions. Furthermore, we can see that when these expressions are composed according to the abstract syntax, with
the additional typing annotations and a few restrictions, any well-typed Zarf program has the property of non-interference
with respect to integrity, even while using a simplistic type system such as that explained here. �
6.4. Programmer responsibility

We have demonstrated that there are varying degrees of responsibility a Zarf programmer can take when writing their
application, each involving greater effort. The first is doing the minimum: the programmer writes their program in Zarf
assembly. A major advantage of Zarf is that the application automatically gains the benefits of memory and control-flow
safety inherent in the ISA, properties that other ISAs don’t easily offer. Any well-formed application that runs on Zarf gets
these properties without any additional programmer involvement.

The second degree of responsibility that can be taken is writing the application’s specification in Coq and automatically
lowering it to Zarf to prove its correctness. This approach involves a non-trivial amount of proof-writing, but since the ISA
resembles the language of verification very closely, we argue that the amount of work involved relative to doing so over
other imperative ISAs is significantly less. Since high-level specification and verification of critical applications is common
practice, this level of programmer responsibility is not usual. Gladly, however, any future proof efforts might not need to be
entirely application-specific. Given the exercise of proving the correctness of the Zarf implementation of the ICD algorithm,
we now have a set of theorems and proofs showing the equivalence between common user-made Zarf functions and Coq
versions. It is conceivable that verification in Coq of future Zarf applications could reuse this underlying work.

The third degree of responsibility involves proving additional properties over the system, beyond the aforementioned
safety and correctness. We demonstrated this by laying a security type system over the ISA, somewhat restricting it (like all
type systems are wont to do) in exchange for the added property of non-interference. Because the process of writing a type
system and checker are sufficiently general, we can see additional type systems or analyses being made over the base Zarf
ISA relatively easily.

Finally, there is the issue of determining which parts of an application should go into each hardware execution realm.
Zarf has two execution realms due in part to the assumption that users might want to include legacy or high performance,
non-critical code; this code can run on the imperative ISA. However, any activity providing critical functionality for safe
operation should happen in the functional processor. Veridrone [71] is an example of another project beyond our ICD that
might benefit from this approach; that project uses both a lower-performance core safety control system and a higher-
performance unverified version that is more energy-efficient and allows for smoother flying.
58

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
Table 1
Resource usage of Zarf and basic MicroBlaze (3-stage pipeline), the
two layers of Zarf, when synthesized for a Xilinx Artix-7 FPGA. In
total, the logic of Zarf uses 29,980 gates.

Resource Zarf MicroBlaze

LUTs 4,337 1,840
FFs 2,779 1,556
Cycle Time 20 ns (50 MHz) 10 ns (100 MHz)

7. Evaluation

To validate our designs, we download the Zarf hardware specification onto a Xilinx Artix-7 FGPA and run our sample
application. For a comparison, we also run a completely unverified C version of the application on a Xilinx MicroBlaze on
the same FPGA. Hardware synthesis results are summarized in Table 1.

The hardware description of Zarf is more complex than a simple embedded CPU, with 66 total states of control logic (4
deal with program loading, 15 with function application, 18 with function evaluation, and 29 with garbage collection). In
all, the combinational logic takes 29,980 primitive gates (roughly the size of a MIPS R3000), or 4,337 LUTs when synthesized
for an Artix-7 FPGA (less than 7% of the available logic resources). Estimated on 130 nm, the combinational logic takes up
.274 mm2. Though larger than very simple embedded CPUs, Zarf is still quite a bit smaller than many common embedded
microcontrollers.

From a dynamic trace of several million cycles, the ICD application exhibited the following average CPI for each in-
struction type. Let instructions had an average of 5.16 arguments and took on average 10.36 cycles. Case instructions
averaged at 10.59 cycles; each branch head in a case takes exactly 1 cycle to check if the branch matches. Results took
11.01 cycles on average. The total dynamic CPI across the trace was 7.46 (or 11.86 if garbage collection time is included).
Approximately one third of the dynamic instructions were branch heads.

The C version of the ICD application on the MicroBlaze takes fewer than one thousand cycles for each iteration of the
application. The analysis in section 6.2 discusses the worst-case runtime of the Zarf application, which is around 9,000 cycles
or 180 μs (though much faster in the typical case). This is in addition to a longer cycle time (see Table 1). When compared to
the carefully optimized and tiny MicroBlaze, our experimental prototype uses approximately twice the hardware resources,
and the application is around 20x slower in the worst case than MicroBlaze in the common case — but is still over 25
times faster than it needs to be to meet the critical real-time deadlines, all while adding invaluable guarantees about the
correctness of the most critical application components and assurance of non-interference between separate functions.

8. Conclusion

As computing continues to automate and improve the control of life-critical systems, new techniques which ease the
development of formally trustworthy systems are sorely needed. The system approach demonstrated in this work shows
that deep and composable reasoning directly on machine instructions is possible when the architecture is amenable to such
reasoning. Our prototype implementation of this concept uses Zarf to control the operation of critical components in a
way that allows assembly-level verified versions of critical code to operate safely in close partnership with more traditional
and less-verified system components without the need to include run-times and compilers in the TCB. We take a holistic
approach to the evaluation of this idea, not only demonstrating its practicality through an FPGA-implemented prototype,
but furthermore showing the successful application of three different forms of static analysis at the assembly level of Zarf.

As we move to increasingly diverse systems on chip, heterogeneity in semantic complexity is an interesting new dimen-
sion to consider. A very small core supporting highly critical workloads might help ameliorate critical bugs, vulnerabilities,
and/or excessive high-assurance costs. A core executing the Zarf ISA would take up roughly 0.002% of a modern SoC. Our
hope is that this work will begin a broader discussion about the role of formal methods in computer architecture design
and how it might be embraced as a part, rather than an afterthought, of the design process.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1239567, 1162187, and
1563935.

We’d like to thank Sung-Yee Guo, Nicholas Brown, Benjamin Campbell, Tristan Konologie, Bingbin ‘Clara’ Liu, and Ben-
jamin Spitz for their work on related system infrastructure, and Kyle Dewey, for his system and type system critiques.
59

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
References

[1] J. McMahan, M. Christensen, L. Nichols, J. Roesch, S.-Y. Guo, B. Hardekopf, T. Sherwood, An architecture supporting formal and compositional binary
analysis, Comput. Archit. News 45 (1) (2017) 177–191, https://doi .org /10 .1145 /3093337.3037733.

[2] R. Mangharam, H. Abbas, M. Behl, K. Jang, M. Pajic, Z. Jiang, Three challenges in cyber-physical systems, in: 2016 8th International Conference on
Communication Systems and Networks (COMSNETS), 2016, pp. 1–8.

[3] S. Shuja, S.K. Srinivasan, S. Jabeen, D. Nawarathna, A formal verification methodology for DDD mode pacemaker control programs, J. Electr. Comput.
Eng. (2015), https://doi .org /10 .1155 /2015 /939028.

[4] J.M. Rushby, Proof of separability: a verification technique for a class of a security kernels, in: Proceedings of the 5th Colloquium on International
Symposium on Programming, Springer-Verlag, London, UK, 1982, pp. 352–367, http://dl .acm .org /citation .cfm ?id =647325 .721663.

[5] N. Heintze, J.G. Riecke, The slam calculus: programming with secrecy and integrity, in: Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’98, ACM, New York, NY, USA, 1998, pp. 365–377, http://doi .acm .org /10 .1145 /268946 .268976.

[6] M. Abadi, A. Banerjee, N. Heintze, J.G. Riecke, A core calculus of dependency, in: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’99, ACM, New York, NY, USA, 1999, pp. 147–160, http://doi .acm .org /10 .1145 /292540 .292555.

[7] D. Volpano, C. Irvine, G. Smith, A sound type system for secure flow analysis, J. Comput. Secur. 4 (2–3) (1996) 167–187, http://dl .acm .org /citation .cfm ?
id =353629 .353648.

[8] D.E. Denning, P.J. Denning, Certification of programs for secure information flow, Commun. ACM 20 (7) (1977) 504–513, https://doi .org /10 .1145 /359636 .
359712, http://doi .acm .org /10 .1145 /359636 .359712.

[9] J.A. Goguen, J. Meseguer, Security policies and security models, in: Security and Privacy, 1982 IEEE Symposium on, 1982, p. 11.
[10] F. Pottier, V. Simonet, Information flow inference for ML, ACM Trans. Program. Lang. Syst. 25 (1) (2003) 117–158, https://doi .org /10 .1145 /596980 .

596983, http://doi .acm .org /10 .1145 /596980 .596983.
[11] A. Sabelfeld, A.C. Myers, Language-based information-flow security, IEEE J. Sel. Areas Commun. 21 (1) (2006) 5–19, https://doi .org /10 .1109 /JSAC .2002 .

806121.
[12] D. Terei, S. Marlow, S. Peyton Jones, D. Mazières, Safe Haskell, in: Proceedings of the 2012 Haskell Symposium, Haskell ’12, ACM, New York, NY, USA,

2012, pp. 137–148, http://doi .acm .org /10 .1145 /2364506 .2364524.
[13] D. Yu, N.A. Hamid, Z. Shao, Building certified libraries for PCC: dynamic storage allocation, in: Proceedings of the 12th European Conference on

Programming, Springer-Verlag, 2003, pp. 363–379.
[14] A. Chlipala, Mostly-automated verification of low-level programs in computational separation logic, in: Proceedings of the 32nd ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, PLDI ’11, ACM, New York, NY, USA, 2011, pp. 234–245, http://doi .acm .org /10 .1145 /
1993498 .1993526.

[15] J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, Arvind, Kami: a platform for high-level parametric hardware specification and its modular verifica-
tion, Proc. ACM Program. Lang. 1 (ICFP) (Aug. 2017), https://doi .org /10 .1145 /3110268.

[16] R.S. Boyer, Y. Yu, Automated correctness proofs of machine code programs for a commercial microprocessor, in: Proceedings of the 11th International
Conference on Automated Deduction: Automated Deduction, CADE-11, Springer-Verlag, London, UK, 1992, pp. 416–430, http://dl .acm .org /citation .cfm ?
id =648230 .752650.

[17] N.G. Michael, A.W. Appel, Machine instruction syntax and semantics in higher order logic, in: Proceedings of the 17th International Conference on
Automated Deduction, CADE-17, Springer-Verlag, London, UK, 2000, pp. 7–24, http://dl .acm .org /citation .cfm ?id =648236 .761384.

[18] A. Kennedy, N. Benton, J.B. Jensen, P.-E. Dagand, Coq: the world’s best macro assembler?, in: Proceedings of the 15th Symposium on Principles and
Practice of Declarative Programming, PPDP ’13, ACM, New York, NY, USA, 2013, pp. 13–24, http://doi .acm .org /10 .1145 /2505879 .2505897.

[19] A. Fox, M.O. Myreen, A trustworthy monadic formalization of the armv7 instruction set architecture, in: Proceedings of the First International Confer-
ence on Interactive Theorem Proving, ITP’10, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 243–258.

[20] J.S. Moore, A mechanically verified language implementation, J. Autom. Reason. 5 (4) (1989) 461–492.
[21] W.A. Hunt Jr, Microprocessor design verification, J. Autom. Reason. 5 (4) (1989) 429–460.
[22] J. Autom. Reason. (2003).
[23] G.C. Necula, Proof-Carrying Code. Design and Implementation, Springer, 2002.
[24] A.W. Appel, Foundational proof-carrying code, in: Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science, LICS ’01, IEEE

Computer Society, Washington, DC, USA, 2001, p. 247, http://dl .acm .org /citation .cfm ?id =871816 .871860.
[25] J. Yang, C. Hawblitzel, Safe to the last instruction: automated verification of a type-safe operating system, in: Proceedings of the 31st ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’10, ACM, New York, NY, USA, 2010, pp. 99–110, http://doi .acm .org /10 .1145 /
1806596 .1806610.

[26] T. Maeda, A. Yonezawa, Typed assembly language for implementing OS kernels in SMP/multi-core environments with interrupts, in: Proceedings of
the 5th International Conference on Systems Software Verification, SSV’10, USENIX Association, Berkeley, CA, USA, 2010, p. 1, http://dl .acm .org /citation .
cfm ?id =1929004 .1929005.

[27] M. Barnett, B.-Y.E. Chang, R. DeLine, B. Jacobs, K.R.M. Leino, Boogie: a modular reusable verifier for object-oriented programs, in: Proceedings of the
4th International Conference on Formal Methods for Components and Objects, FMCO’05, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 364–387.

[28] H. Xi, R. Harper, A dependently typed assembly language, in: Proceedings of the Sixth ACM SIGPLAN International Conference on Functional Program-
ming, ICFP ’01, ACM, New York, NY, USA, 2001, pp. 169–180, http://doi .acm .org /10 .1145 /507635 .507657.

[29] A. Chlipala, A verified compiler for an impure functional language, in: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’10, ACM, New York, NY, USA, 2010, pp. 93–106, http://doi .acm .org /10 .1145 /1706299 .1706312.

[30] G.C. Necula, Translation validation for an optimizing compiler, in: Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language Design
and Implementation, PLDI ’00, ACM, New York, NY, USA, 2000, pp. 83–94, http://doi .acm .org /10 .1145 /349299 .349314.

[31] P. Curzon, P. Curzon, A verified compiler for a structured assembly language, in: Proceedings of the 1991 International Workshop on the HOL Theorem
Proving System and Its Applications, IEEE Computer, Society Press, 1991, pp. 253–262.

[32] M. Strecker, Formal verification of a Java compiler in Isabelle, in: Automated Deduction—CADE-18, Springer, 2002, pp. 63–77.
[33] X. Leroy, A formally verified compiler back-end, J. Autom. Reason. 43 (4) (2009) 363–446, http://gallium .inria .fr /~xleroy /publi /compcert -backend .pdf.
[34] A.W. Appel, Verified software toolchain, in: Proceedings of the 20th European Conference on Programming Languages and Systems: Part of the Joint

European Conferences on Theory and Practice of Software, ESOP’11/ETAPS’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 1–17, http://dl .acm .org /
citation .cfm ?id =1987211.1987212.

[35] G. Neis, C.-K. Hur, J.-O. Kaiser, C. McLaughlin, D. Dreyer, V. Vafeiadis, Pilsner: a compositionally verified compiler for a higher-order imperative lan-
guage, in: Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming, ICFP 2015, ACM, New York, NY, USA, 2015,
pp. 166–178, http://doi .acm .org /10 .1145 /2784731.2784764.

[36] T. Ramananandro, Z. Shao, S.-C. Weng, J. Koenig, Y. Fu, A compositional semantics for verified separate compilation and linking, in: Proceedings of the
2015 Conference on Certified Programs and Proofs, CPP ’15, ACM, New York, NY, USA, 2015, pp. 3–14, http://doi .acm .org /10 .1145 /2676724 .2693167.

[37] Z. Jiang, M. Pajic, R. Mangharam, Cyber-physical modeling of implantable cardiac medical devices, Proc. IEEE 100 (1) (2012) 122–137, https://doi .org /
10 .1109 /JPROC .2011.2161241.
60

https://doi.org/10.1145/3093337.3037733
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib81061E3B1F0212D03F6D54B6F11AC724s1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib81061E3B1F0212D03F6D54B6F11AC724s1
https://doi.org/10.1155/2015/939028
http://dl.acm.org/citation.cfm?id=647325.721663
http://doi.acm.org/10.1145/268946.268976
http://doi.acm.org/10.1145/292540.292555
http://dl.acm.org/citation.cfm?id=353629.353648
http://dl.acm.org/citation.cfm?id=353629.353648
https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/359636.359712
http://doi.acm.org/10.1145/359636.359712
http://refhub.elsevier.com/S0304-3975(20)30550-8/bibA75BC191854ABC276C7F497B0B0AF77As1
https://doi.org/10.1145/596980.596983
https://doi.org/10.1145/596980.596983
http://doi.acm.org/10.1145/596980.596983
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
http://doi.acm.org/10.1145/2364506.2364524
http://refhub.elsevier.com/S0304-3975(20)30550-8/bibB3D28DA29E8809612689BD8EEA29DF9Bs1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bibB3D28DA29E8809612689BD8EEA29DF9Bs1
http://doi.acm.org/10.1145/1993498.1993526
http://doi.acm.org/10.1145/1993498.1993526
https://doi.org/10.1145/3110268
http://dl.acm.org/citation.cfm?id=648230.752650
http://dl.acm.org/citation.cfm?id=648230.752650
http://dl.acm.org/citation.cfm?id=648236.761384
http://doi.acm.org/10.1145/2505879.2505897
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib4185C7CA1478CA3E279E46963BEBBF00s1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib4185C7CA1478CA3E279E46963BEBBF00s1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib464962C210E112C25C491DEB8A432A53s1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bibB473973F39F4444262EC5530F10ED462s1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bibAD6C009EA09F6CE6B48E9AD8ABD77437s1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib745F7A811289C106923EC40098390BC8s1
http://dl.acm.org/citation.cfm?id=871816.871860
http://doi.acm.org/10.1145/1806596.1806610
http://doi.acm.org/10.1145/1806596.1806610
http://dl.acm.org/citation.cfm?id=1929004.1929005
http://dl.acm.org/citation.cfm?id=1929004.1929005
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib0C21FFD6F0D0E80AF7F229177DB1218As1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib0C21FFD6F0D0E80AF7F229177DB1218As1
http://doi.acm.org/10.1145/507635.507657
http://doi.acm.org/10.1145/1706299.1706312
http://doi.acm.org/10.1145/349299.349314
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib4BD632B032521795A0B8D486A5B41C4Es1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib4BD632B032521795A0B8D486A5B41C4Es1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib8AD749B08FFEF49EC3A03E96EF93D615s1
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
http://dl.acm.org/citation.cfm?id=1987211.1987212
http://dl.acm.org/citation.cfm?id=1987211.1987212
http://doi.acm.org/10.1145/2784731.2784764
http://doi.acm.org/10.1145/2676724.2693167
https://doi.org/10.1109/JPROC.2011.2161241
https://doi.org/10.1109/JPROC.2011.2161241

M. Christensen, J. McMahan, L. Nichols et al. Theoretical Computer Science 851 (2021) 39–61
[38] A.O. Gomes, M.V.M. Oliveira, Formal specification of a cardiac pacing system, in: A. Cavalcanti, D.R. Dams (Eds.), FM 2009: Formal Methods, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 692–707.

[39] T. Chen, M. Diciolla, M. Kwiatkowska, A. Mereacre, Quantitative verification of implantable cardiac pacemakers, in: Real-Time Systems Symposium
(RTSS), 2012 IEEE 33rd, IEEE, 2012, pp. 263–272.

[40] L. Cordeiro, B. Fischer, H. Chen, J. Marques-Silva, Semiformal verification of embedded software in medical devices considering stringent hardware
constraints, in: 2009 International Conference on Embedded Software and Systems, 2009, pp. 396–403.

[41] P.J. Landin, The mechanical evaluation of expressions, Comput. J. 6 (4) (1964) 308–320, https://doi .org /10 .1093 /comjnl /6 .4 .308.
[42] B. Graham, SECD: Design issues, Tech. Rep., University of Calgary, 1989, http://hdl .handle .net /1880 /46590.
[43] T.J. Clarke, P.J. Gladstone, C.D. MacLean, A.C. Norman, SKIM - the S, K, I reduction machine, in: Proceedings of the 1980 ACM Conference on LISP and

Functional Programming, LFP ’80, ACM, New York, NY, USA, 1980, pp. 128–135, http://doi .acm .org /10 .1145 /800087.802798.
[44] L.P. Deutsch, A lisp machine with very compact programs, in: Proceedings of the 3rd International Joint Conference on Artificial Intelligence, Morgan

Kaufmann Publishers Inc., 1973, pp. 697–703.
[45] P.M. Kogge, The Architecture of Symbolic Computers, McGraw-Hill, Inc., New York, 1991.
[46] T.F. Knight, Implementation of a list processing machine, Ph.D. thesis, Massachusetts Institute of Technology, 1979.
[47] J.M. McCune, B.J. Parno, A. Perrig, M.K. Reiter, H. Isozaki, Flicker: an execution infrastructure for tcb minimization, Oper. Syst. Rev. 42 (4) (2008)

315–328, https://doi .org /10 .1145 /1357010 .1352625, http://doi .acm .org /10 .1145 /1357010 .1352625.
[48] E. Keller, J. Szefer, J. Rexford, R.B. Lee, NoHype: virtualized cloud infrastructure without the virtualization, Comput. Archit. News 38 (3) (2010) 350–361,

https://doi .org /10 .1145 /1816038 .1816010, http://doi .acm .org /10 .1145 /1816038 .1816010.
[49] D. Halperin, T.S. Heydt-Benjamin, B. Ransford, S.S. Clark, B. Defend, W. Morgan, K. Fu, T. Kohno, W.H. Maisel, Pacemakers and implantable cardiac

defibrillators: software radio attacks and zero-power defenses, in: 2008 IEEE Symposium on Security and Privacy (SP 2008), IEEE, 2008, pp. 129–142.
[50] S. Gollakota, H. Hassanieh, B. Ransford, D. Katabi, K. Fu, They can hear your heartbeats: non-invasive security for implantable medical devices, in: Proc.

ACM Conf. SIGCOMM, 2011, pp. 2–13.
[51] T. Denning, K. Fu, T. Kohno, Absence makes the heart grow fonder: new directions for implantable medical device security, in: Proceedings of the 3rd

Conference on Hot Topics in Security, HOTSEC’08, USENIX Association, Berkeley, CA, USA, 2008, 5, http://dl .acm .org /citation .cfm ?id =1496671.1496676.
[52] B. Hardekopf, C. Lin, Flow-sensitive pointer analysis for millions of lines of code, in: Proceedings of the 9th Annual IEEE/ACM International Symposium

on Code Generation and Optimization, CGO ’11, IEEE Computer Society, Washington, DC, USA, 2011, pp. 289–298, http://dl .acm .org /citation .cfm ?id =
2190025 .2190075.

[53] E. Moggi, Notions of computation and monads, Inf. Comput. 93 (1) (1991) 55–92.
[54] P. Hudak, J. Hughes, S. Peyton Jones, P. Wadler, A history of Haskell: being lazy with class, in: Proceedings of the Third ACM SIGPLAN Conference on

History of Programming Languages, ACM, 2007, 12.
[55] R. Hindley, The principal type-scheme of an object in combinatory logic, Trans. Am. Math. Soc. 146 (1969) 29–60, http://www.jstor.org /stable /1995158.
[56] R. Milner, A theory of type polymorphism in programming, J. Comput. Syst. Sci. 17 (1978) 348–375.
[57] M.E. Conway, Design of a separable transition-diagram compiler, Commun. ACM 6 (7) (1963) 396–408, https://doi .org /10 .1145 /366663 .366704, http://

doi .acm .org /10 .1145 /366663 .366704.
[58] A.L.D. Moura, R. Ierusalimschy, Revisiting coroutines, ACM Trans. Program. Lang. Syst. 31 (2) (2009) 6, https://doi .org /10 .1145 /1462166 .1462167, http://

doi .acm .org /10 .1145 /1462166 .1462167.
[59] S.J. Connolly, M. Gent, R.S. Roberts, P. Dorian, D. Roy, R.S. Sheldon, L.B. Mitchell, M.S. Green, G.J. Klein, B. O’Brien, Canadian implantable defibrillator

study (CIDS), Circulation 101 (11) (2000) 1297–1302, https://doi .org /10 .1161 /01.CIR .101.11.1297, http://circ .ahajournals .org /content /101 /11 /1297.full .
pdf, http://circ .ahajournals .org /content /101 /11 /1297.

[60] T. A. versus Implantable Defibrillators (AVID) Investigators, A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients re-
suscitated from near-fatal ventricular arrhythmias, N. Engl. J. Med. 337 (22) (1997) 1576–1584, https://doi .org /10 .1056 /NEJM199711273372202, pMID:
9411221.

[61] J. Siebels, K.-H. Kuck, C. Investigators, Implantable cardioverter defibrillator compared with antiarrhythmic drug treatment in cardiac arrest survivors
(the cardiac arrest study Hamburg), Am. Heart J. 127 (1994) 1139–1144, https://doi .org /10 .1016 /0002 -8703(94)90101 -5.

[62] Living with your implantable cardioverter defibrillator (ICD), http://www.heart .org /HEARTORG /Conditions /Arrhythmia /
PreventionTreatmentofArrhythmia /Living -With -Your-Implantable -Cardioverter-Defibrillator-ICD _UCM _448462 _Article .jsp, 09 2016.

[63] How many people have ICDs? http://asktheicd .com /tile /106 /english -implantable -cardioverter-defibrillator-icd /how-many-people -have -icds/. (Ac-
cessed 24 October 2019).

[64] J. Pan, W.J. Tompkins, A real-time QRS detection algorithm, IEEE Trans. Biomed. Eng. BME-32 (3) (1985) 230–236, https://doi .org /10 .1109 /TBME .1985 .
325532.

[65] R.A. Álvarez, A.J.M. Penín, X.A.V. Sobrino, A comparison of three QRS detection algorithms over a public database, in: CENTERIS 2013 - Conference
on ENTERprise Information Systems/ProjMAN 2013 - International Conference on Project MANagement/HCIST 2013 - International Conference on
Health and Social Care Information Systems and Technologies, Proc. Technol. 9 (2013) 1159–1165, https://doi .org /10 .1016 /j .protcy.2013 .12 .129, http://
www.sciencedirect .com /science /article /pii /S2212017313002831.

[66] Open source ECG analysis software, http://www.eplimited .com /confirmation .htm. (Accessed 24 October 2019).
[67] M.S. Wathen, P.J. DeGroot, M.O. Sweeney, A.J. Stark, M.F. Otterness, W.O. Adkisson, R.C. Canby, K. Khalighi, C. Machado, D.S. Rubenstein, K.J. Volosin,

Prospective randomized multicenter trial of empirical antitachycardia pacing versus shocks for spontaneous rapid ventricular tachycardia in patients
with implantable cardioverter-defibrillators, Circulation 110 (17) (2004) 2591–2596, https://doi .org /10 .1161 /01.CIR .0000145610 .64014 .E4, http://circ .
ahajournals .org /content /110 /17 /2591.full .pdf, http://circ .ahajournals .org /content /110 /17 /2591.

[68] The Coq proof assistant, https://coq .inria .fr. (Accessed 24 October 2019).
[69] V. Kashyap, B. Wiedermann, B. Hardekopf, Timing- and termination-sensitive secure information flow: exploring a new approach, in: 2011 IEEE Sym-

posium on Security and Privacy, 2011, pp. 413–428.
[70] V. Simonet, Fine-grained information flow analysis for a λ calculus with sum types, in: Proceedings of the 15th IEEE Workshop on Computer Security

Foundations, CSFW ’02, IEEE Computer Society, Washington, DC, USA, 2002, p. 223, http://dl .acm .org /citation .cfm ?id =794201.795163.
[71] D. Ricketts, G. Malecha, M.M. Alvarez, V. Gowda, S. Lerner, Towards verification of hybrid systems in a foundational proof assistant, in: 2015 ACM/IEEE

International Conference on Formal Methods and Models for Codesign (MEMOCODE), 2015, pp. 248–257.
61

http://refhub.elsevier.com/S0304-3975(20)30550-8/bib56A638E141352316EEAB985264992103s1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib56A638E141352316EEAB985264992103s1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib379CB714F7C76CAB88C818631D1686CAs1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib379CB714F7C76CAB88C818631D1686CAs1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib04A75CAAA6DD47BC556A5343EA659165s1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib04A75CAAA6DD47BC556A5343EA659165s1
https://doi.org/10.1093/comjnl/6.4.308
http://hdl.handle.net/1880/46590
http://doi.acm.org/10.1145/800087.802798
http://refhub.elsevier.com/S0304-3975(20)30550-8/bibA08566DF423CCC591CEA0779562BDF7Bs1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bibA08566DF423CCC591CEA0779562BDF7Bs1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib407AECB09ED6E2F22A5E475AB6B76AEAs1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib64D3E6B2F004304DC6B540C4887CDEF5s1
https://doi.org/10.1145/1357010.1352625
http://doi.acm.org/10.1145/1357010.1352625
https://doi.org/10.1145/1816038.1816010
http://doi.acm.org/10.1145/1816038.1816010
http://refhub.elsevier.com/S0304-3975(20)30550-8/bibBEE84E3A7BFB84D2AE6BE622494D35D8s1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bibBEE84E3A7BFB84D2AE6BE622494D35D8s1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib85050FB2B6B1A7989CCC3E3CDA473F88s1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib85050FB2B6B1A7989CCC3E3CDA473F88s1
http://dl.acm.org/citation.cfm?id=1496671.1496676
http://dl.acm.org/citation.cfm?id=2190025.2190075
http://dl.acm.org/citation.cfm?id=2190025.2190075
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib88AE826F196109BE41B6BA3DF04DA778s1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib28F1BFA7A28E46AEF146328F48FBC9B2s1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib28F1BFA7A28E46AEF146328F48FBC9B2s1
http://www.jstor.org/stable/1995158
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib90F1DE37293482B133FBB105C16C70B7s1
https://doi.org/10.1145/366663.366704
http://doi.acm.org/10.1145/366663.366704
http://doi.acm.org/10.1145/366663.366704
https://doi.org/10.1145/1462166.1462167
http://doi.acm.org/10.1145/1462166.1462167
http://doi.acm.org/10.1145/1462166.1462167
https://doi.org/10.1161/01.CIR.101.11.1297
http://circ.ahajournals.org/content/101/11/1297.full.pdf
http://circ.ahajournals.org/content/101/11/1297.full.pdf
http://circ.ahajournals.org/content/101/11/1297
https://doi.org/10.1056/NEJM199711273372202
https://doi.org/10.1016/0002-8703(94)90101-5
http://www.heart.org/HEARTORG/Conditions/Arrhythmia/PreventionTreatmentofArrhythmia/Living-With-Your-Implantable-Cardioverter-Defibrillator-ICD_UCM_448462_Article.jsp
http://www.heart.org/HEARTORG/Conditions/Arrhythmia/PreventionTreatmentofArrhythmia/Living-With-Your-Implantable-Cardioverter-Defibrillator-ICD_UCM_448462_Article.jsp
http://asktheicd.com/tile/106/english-implantable-cardioverter-defibrillator-icd/how-many-people-have-icds/
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1016/j.protcy.2013.12.129
http://www.sciencedirect.com/science/article/pii/S2212017313002831
http://www.sciencedirect.com/science/article/pii/S2212017313002831
http://www.eplimited.com/confirmation.htm
https://doi.org/10.1161/01.CIR.0000145610.64014.E4
http://circ.ahajournals.org/content/110/17/2591.full.pdf
http://circ.ahajournals.org/content/110/17/2591.full.pdf
http://circ.ahajournals.org/content/110/17/2591
https://coq.inria.fr
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib8E579852FB6D106BF8CB102F8388122Bs1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bib8E579852FB6D106BF8CB102F8388122Bs1
http://dl.acm.org/citation.cfm?id=794201.795163
http://refhub.elsevier.com/S0304-3975(20)30550-8/bibA395158AD372249BEFD615486BA111BDs1
http://refhub.elsevier.com/S0304-3975(20)30550-8/bibA395158AD372249BEFD615486BA111BDs1

	Safe functional systems through integrity types and verified assembly
	1 Introduction
	2 Related work
	2.1 Verification
	2.2 Architecture

	3 Hardware architecture and ISA
	3.1 Design goals
	3.2 Description and semantics
	3.3 Instruction set
	3.4 Built-in functions, I/O, and errors

	4 System software
	4.1 Functional vs. imperative
	4.2 ICD

	5 ISA semantics
	5.1 Names and programs
	5.2 Result
	5.3 Let
	5.4 I/O
	5.5 Case
	5.6 apply helper functions

	6 Verification
	6.1 Correctness
	6.2 Timing
	6.3 Non-interference
	6.3.1 Integrity type system

	6.4 Programmer responsibility

	7 Evaluation
	8 Conclusion
	Declaration of competing interest
	Acknowledgements
	References

