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Abstract—Fuzzers are important bug-finding tools in both
academia and industry. To ensure scientific progress, we need a
metric for fuzzer comparison. Bug-based metrics are impractical
because (1) the definition of “bug” is vague, and (2) mapping bug-
revealing inputs to bugs requires extensive domain knowledge.

In this paper, we propose an automated method for comparing
fuzzers that alleviates these problems. We replace the question
“What bugs can this fuzzer find?” with “What changes in
program behavior over time can this fuzzer detect?”. Intuitively,
fuzzers which find more behavioral changes are likely to find
more bugs. However, unlike bugs, behavioral changes are well-
defined and readily detectable. Our evaluation, executed on three
targets with several fuzzers, shows that our method is consistent
with bug-based metrics, but without associated difficulties. While
further evaluation is needed to establish superiority, our results
show that our method warrants further investigation.

I. INTRODUCTION

Fuzzing is an important automated testing technique that

has enabled the discovery of tens of thousands of bugs across

a variety of software projects [1], [2]. Fuzzing is an active

area of research with a long history (e.g., [2]–[5]). To ensure

scientific progress, we must compare new fuzzers to competing

fuzzers to determine if new fuzzers advance the field.

In this paper, we address the problem of comparing fuzzers

in an efficient, automatable, precise, and reproducible way.

Fuzzers are meant to find bugs, so the first metric that comes

to mind is comparing the sets of bugs that each fuzzer finds on

an arbitrary system under test (SUT). However, in a study of

32 fuzzer evaluations in the literature, only 7 used bug-based

comparisons [5]. Of these 7, all used fixed SUTs containing

known bugs to find; none compared on arbitrary SUTs with

unknown bugs. Our own independent study (Section V) cor-

roborates the rarity of bug-based evaluations. In practice, we

rarely evaluate fuzzers in the same way we use fuzzers.

We argue that realistic bug-based evaluations are rare be-

cause they are prohibitively labor-intensive to perform. Specif-

ically, bug-based evaluations require us to (1) classify inputs

into triggers (i.e., inputs that cause a detectable fault in the

SUT), and (2) group triggers into equivalence classes.

Classifying inputs into triggers and non-triggers is known

as the testing-oracle problem [6], which requires extensive

SUT domain knowledge. While triggers causing the SUT to

crash (e.g., with a segmentation fault) are easily detectable,

detecting more subtle faults like normal termination with

incorrect results is far more difficult. Detection of such correct-
ness bugs in addition to more commonly studied crash bugs,

without requiring full oracles, is a key goal of our approach.
Grouping triggers into equivalence classes by the bugs

they manifest is similarly difficult. For example, 1,000 triggers

may all expose the same bug, meaning only one bug is found;

heavily skewed situations like these are seen in practice [7].

Conversely, 2 triggers may expose two separate bugs, meaning

two bugs are found. Heuristics exist to group triggers (e.g.,

Chen et al. [7], mutants [8], coverage profiles [9], fuzzy stack

hashes [10]), but Kees et al. [5] show these often fail, leading

to inaccurate results. While targeted bug fixes [11] have shown

promise in crash-focused fuzzing (e.g. typical AFL [9]), this

is limited to a small set of predefined bug types; for example,

while this has been done for buffer overflows, it is still

an open problem for use-after-frees [12]. Targeted bug fixes

are extremely expensive and unlikely to ever be applicable

to complex SUTs like compilers [12]. Overall, automatic

grouping even for simple crashes is currently limited, and may

never be effective enough for fuzzer comparison. Manually

grouping bugs is impractical, given that fuzzers often find

hundreds of thousands of triggers [2], [7], [13], [14].
Our goal with this work is to provide a fuzzer evaluation

methodology that, like bugs, is rooted in SUT behavior on

inputs from fuzzers. However, we want a methodology that is

automatable and reproducible. Towards solving this problem,

we make several key (though seemingly disjoint) observations:

• While bugs are subjective and non-reproducible, they

nonetheless capture an interesting trait of the SUT’s

behavior on an input. Despite their imperfections, bugs

are on the right track for fuzzer comparison.

• Bugs are viewable as developer-made code changes

which cause a SUT to exhibit unintended behavior.
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• Software has versions, where each version is the result of

code changes to a prior version. Developers make these

code changes, which may fix or introduce bugs.

• Given a test input from a fuzzer, we can derive some

SUT output for each version under the same input. By

comparing these outputs, we can detect when a SUT

version change leads to an output change.

Combining these observations, given test inputs from a fuzzer,

we can automatically detect when a developer-initiated SUT

change impacted the SUT’s behavior. We use this detection as

a novel basis of fuzzer evaluation known as fuzzer appeal.
We evaluate fuzzer appeal on three case studies (Section III),

intentionally using examples from the compiler-fuzzing do-

main, where custom fuzzers are often required and simple bug-

counting methods are ineffective. These case studies show that

fuzzer appeal produces results consistent with those from bug-

counting methods, and can even deliver meaningful results in

the absence of bugs. We present this as a preliminary study,

as many more case studies are needed to fully establish fuzzer

appeal’s validity. The lack of sufficient case studies is a reflec-

tion of the problems with bug-based evaluations: performing

a single bug-based evaluation is a daunting task, requiring

massive SUT developer cooperation and likely forcing us to

use recent SUT versions which were not previously evaluated.

The contributions of this paper are as follows:

• The introduction of fuzzer appeal: our automated method

for evaluating fuzzer effectiveness, based on finding

developer-initiated changes in SUT behavior. (Section II)

• Preliminary experiments demonstrating the validity of

fuzzer appeal in three case studies. (Section III)

• A qualitative comparison of fuzzer comparison methods,

particularly those used in practice. (Section V)

II. FUZZER APPEAL

This section defines fuzzer appeal, our proposed metric for

effective fuzzer comparisons. We begin with fuzzer appeal’s

intuition, followed by a formal definition.

A. Intuition Behind Fuzzer Appeal

Rather than trying to classify inputs into triggers and group

triggers by the bugs they exhibit, we rely on two key notions:

• History. Rather than contacting developers to pinpoint

interesting parts of the code, we rely on SUT version

history as a proxy telling us which parts of the code the

developers found interesting enough to modify. Ideally,

this version history is composed of all internal develop-

ment commits, not just major and minor SUT releases.

• Behaviors. Instead of basing our comparison metric on

bugs, which are hard to define and require developer

support to compute, we base comparisons on observed

behaviors. A behavior is a test input (produced by a

fuzzer), combined with the SUT’s output on said input.

From a high level, fuzzer appeal is based on observing

changes in SUT behavior on the same test inputs across the

SUT’s version history. Fuzzers which find more unique be-

havior changes are more effective at finding the consequences

of developer-initiated code changes. Fuzzer appeal overap-

proximates bugs, as bugs form a subset of developer-initiated

code changes. However, unlike bugs, fuzzer appeal requires

no understanding of intended vs. actual SUT semantics.

When computing fuzzer appeal, we only care about changes

in behavior, not the actual behaviors themselves. To this

end, we construct a separate behavior pattern for each test

input. A behavior pattern is a bitvector, where each bit’s

index corresponds to a pair of consecutive SUT versions (e.g.,

(v0, v1), (v1, v2), (v2, v3), and so on). The bit is a 0 if the two

SUT outputs for the given input are identical, else a 1.

From these behavior patterns, we build a behavior map:

a map where the keys are unique behavior patterns, and the

values record how many times the given behavior pattern was

observed. We consider all behavior patterns with this map,

irrespective of the particular test input. This map tells us how

many unique behavior patterns a fuzzer found (the keys), and

how redundant a fuzzer’s output (test inputs) were (the values).

EXAMPLE. Say our SUT is a primitive calculator with seven

versions. One fuzzer we want to compare creates three test

inputs: “2+2”, “3+3” and “3*3”. We run these inputs on each

of the seven versions, yielding the following outputs:

2 + 2 �→ 4, 4, 4, 4, 5, 4, 4

3 + 3 �→ 5, 5, 5, 5, 8, 6, 6

3 ∗ 3 �→ 9, 9, 9, 9, 9, 9, 9

Without determining if the output is semantically correct, we

can see that the first and second input expose differences when

the output changes from 4 to 5 (first) and from 5 to 8 (second)

between versions 4 and 5, and then again when 5 changes to

4 (first) and 8 changes to 6 (second) between versions 5 and

6. We construct behavior patterns from these behaviors:

2 + 2 �→ 4, 4, 4, 4, 5, 4, 4 �→ 000110

3 + 3 �→ 5, 5, 5, 5, 8, 6, 6 �→ 000110

3 ∗ 3 �→ 9, 9, 9, 9, 9, 9, 9 �→ 000000

From these behavior patterns, we build a behavior map:

{000110 �→ 2, 000000 �→ 1}
This behavior map shows two distinct behavior patterns, where

one comes from one input, and the other from two inputs.

Fuzzers with big behavior maps seem better for finding

bugs, as such fuzzers better explore SUT semantics. How-

ever, the behavior map’s size only tells part of the story.

In addition to exposing many unique behavior patterns, an

ideal fuzzer should expose a diverse set of behavior patterns.

While behavior pattern counts and diversity may sound similar,

they are distinct. Unlike pattern counts, measuring diversity

requires more sophisticated techniques, and we use Shannon’s
entropy [15]–[17] for this purpose. In the context of fuzzer

appeal, entropy is viewable as a measure of how many

different ways there are to describe the SUT’s history when

looking through behavior patterns. The higher the entropy, the

more diverse the behavior patterns observed.
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B. Formal Definition of Fuzzer Appeal

DEFINITION: Behavior Vector. Let i be a test input, and I
be a set of test inputs, where I = { i1, . . . , in }. Given an

input ik ∈ I and an ordered list of SUT versions
−−→
SUT =

[ SUT1, . . . ,SUTs ], a behavior vector
−→
Ok is defined as:

−→
Ok =

−−−−−−→
SUTj(ik) for 1 ≤ j ≤ s (1)

In other words, each input is mapped to the sequence of

outputs for that input over the vector of SUT versions. The

form of the inputs and outputs is irrelevant, as are how

they are derived; they can be primitive datatypes, complex

data structures, images, stack traces, or otherwise. The only

requirement is to have some notion of equality among outputs.

DEFINITION: Behavior Pattern. Assume eq is a function

which takes two SUT outputs and returns 1 if they are equal,

else 0. A behavior pattern
−→
Δk for an input ik is defined as:

−→
Δk =

−−−−−−−−−−−−−−−→
eq(Ok(j), Ok(j + 1)) for 1 ≤ j < s (2)

In other words, each output in the behavior vector is tested

for equality with the next output in sequence. Every element

of
−→
Δk can be encoded as a bitvector of length s− 1.

EXAMPLE. Formalizing the example given previously, where

i1 = “2 + 2”, i2 = “3 + 3”, and i3 = “3 ∗ 3”, the observed

behaviors
−→
Ok associated with these inputs are:

−→
O1 = [

|−−−→SUT |︷ ︸︸ ︷
4, 4, 4, 4, 5, 4, 4 ]

−→
O2 = [ 5, 5, 5, 5, 8, 6, 6 ]
−→
O3 = [ 9, 9, 9, 9, 9, 9, 9 ]

We then compute the behavior patterns
−→
Δk as:

−→
Δ1 = [ 0, 0, 0, 1, 1, 0 ]
−→
Δ2 = [ 0, 0, 0, 1, 1, 0 ]
−→
Δ3 = [ 0, 0, 0, 0, 0, 0︸ ︷︷ ︸

|−−−→SUT |−1

]

DEFINITION: Behavior Map. A behavior map PF for a fuzzer

F partitions the input set by behavior pattern
−→
Δ values and

maps each partition to its size.

EXAMPLE. Continuing the prior example, we have two unique

patterns, and thus two equivalence classes of patterns:

{−→Δ1,
−→
Δ2} {−→Δ3}

This partitioning leads to the following behavior map:

PF = {000110 �→ 2, 000000 �→ 1}
DEFINITION: Information Entropy. Given a random variable

X that takes a value x with probability p(X = x), the

information entropy H of X is:

H(X) = −
∑
x∈X

p(x) log2 p(x). (3)

This comes directly from Shannon’s entropy [15]–[17]. En-

tropy is lower when a data set can be explained in a simple

way (i.e., the set can be significantly compressed without

losing information), and higher when a data set cannot be

explained in a simple way (i.e., the set cannot be compressed

without losing information). For fuzzer appeal, we calculate

the entropy of the behavior map PF . Our discrete probability

function p(x) is the ratio of the number of times behavior

pattern x was seen, over the total number of test inputs:

p(x) =
PF (x)∑

y∈dom(PF )

PF (y)
(4)

The more unique behavior patterns there are, and the closer the

counts of each behavior pattern are to a uniform distribution,

the higher the entropy.

DEFINITION: Fuzzer Appeal. For a fuzzer F with a computed

behavior map PF , we define fuzzer appeal AF as:

AF = |dom(PF )| ·H(PF ) (5)

where H is information entropy from Definitions 3 and 4.

Unlike bug counts, fuzzer appeal has minimum and maxi-

mum possible values, determined by plugging in the smallest

and largest possible PF sizes in Definition 5. This yields a

minimum of 0 and a maximum of 2(s−1) · s. In practice, s
need only be large enough to allow different fuzzers to yield

significantly different fuzzer appeal values, and Section III

shows that s values as small as 7 can be effective.

III. EXPERIMENTS

For our evaluation, we chose three industry-grade targets

with rich communities and publicly-available version histories.

Bugs found in these applications have proven hard to track and

solve, mostly because they are non-obvious correctness bugs.

All three targets have complex input languages, so generic

mutation-based fuzzers like AFL [9] need example corpuses

or time to give productive results. Our goal with this section

is not to find new bugs, but rather show how fuzzer appeal

compares to other fuzzer evaluation metrics like bugs. We

show that fuzzer appeal agrees with bug-based metrics, and

can give meaningful results even in the absence of bugs. We

phrase this entire work as a preliminary study because three

case studies is insufficient to conclusively demonstrate fuzzer

appeal’s superiority; this is only enough data to show that

fuzzer appeal is promising and worth further investigation.

A. Evaluation Setup

All experiments were run on a machine with 12-cores,

32GB RAM, and Ubuntu 16.04. For each SUT we used

two ways to limit fuzzing, corresponding to whether fuzzer

effectiveness or efficiency is the main concern:

• Time-limited: stop fuzzers after k hours

• Size-limited: stop fuzzers after they generate k inputs

We use existing, well-known comparison metrics (Sec-

tion V) and fuzzer appeal (Section II) to:
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• Compare similar fuzzers targeting the Z3 SMT
solver [18]. One fuzzer generates inputs targeting Z3’s

semantics, whereas the other merely generates valid Z3

inputs. This evaluation shows how fuzzer appeal com-
pares to the most precise bug-based metric with much
less manual effort; the actual fuzzers are irrelevant.

• Compare two previously examined CSMITH operation
modes (default [2] and swarm testing [4]) showing that

fuzzer appeal can be used to show differences in test set
variability with less work.

• Compare fuzzers targeting the Solidity smart contract
compiler [19], showing that fuzzer appeal can compare
fuzzers even when trigger- and bug-based metrics cannot.

B. Description of the SUTs and Fuzzers

1) THE Z3 SMT SOLVER: SMT solvers are vitally im-

portant tools used in many domains, including automated

testing [20], synthesis [21], and verification [22]. Given the

sensitive nature of these applications (e.g., proofs in verifica-

tion), solver correctness bugs are a critical issue. We choose

Z3 [18] as a target since it is actively developed, has an

interested and responsive developer team, and its inputs (SMT-

LIB2 [23]) and outputs (satisfiability results and models) are

well-defined and understood. We choose 23 versions from

Z3’s git repository1 previously found to contain 13 correctness

bugs2. The two fuzzers used for evaluating Z3 were inspired

by Dewey et al. [24], and generate Z3 inputs in different ways:

• The syntactic fuzzer generates arbitrary valid inputs

• The semantic fuzzer understands the meaning behind Z3’s

operations, and uses this knowledge to generate valid

inputs which should evaluate to specific values

2) THE GCC COMPILER: The CSMITH C compiler

fuzzer covers a large subset of the C language, and avoids the

pitfalls of undefined or unspecified behavior. We compare two

CSMITH [2] modes: vanilla, the default with all toggleable

features on, and swarm [4], where a series of feature subsets

(called configuations) are enabled and run for proportionally

shorter amounts of time. Groce et al. [4] show that swarm

testing reveals 42% more distinct ways to crash compilers with

30% fewer crash instances, and that it overall finds more bugs.

Our evaluation explores whether this input diversity translates

into greater fuzzer appeal. We use the same GCC versions as

the swarm paper [4]. We chose a swarm of a 1,000 different

configurations, generated from a binomial distribution.

3) THE SOLC SOLIDITY COMPILER: SOLC is a lan-

guage for implementing smart contracts for the Ethereum

Virtual Machine (EVM), and is a popular fuzzing target due

to the current interest in blockchain. We fuzz SOLC versions

0.4.{16 − 22}. Bhargavan et al. [25] formally verified the

1commits 424f34d, 09980a4, 4e7c7f2, 44105b7, 25f75b6,
52df222, 2115ea8, d4b6653, 0b15fc9, 04266fc, 57af3a4,
98b3a5b, 40c5152, 9dfc2bc, ec5a4ba, ed1a579, 7a317a4,
5d0db6d, cb6d008, ade2dbe, bf3a5ef, 9b91e6f, bd187e0 in
https://github.com/Z3Prover/z3

2https://github.com/Z3Prover/z3/issues/{68, 190, 212, 215, 220, 222, 480,
551, 567, 615, 616, 642, 643}.

correctness of EVM bytecode, but neither SOLC itself nor

its translation to EVM bytecode has been verified.

We fuzz SOLC with two fuzzers: a black-box grammar-

based fuzzer written in TSTL [26], and AFL [9], a gray-

box mutational fuzzer. AFL guides fuzzing via information

gathered from instrumented SUT source code. We construct a

seed corpus for AFL by supplying it example SOLC contracts

from the SOLC distribution. We run AFL both with and

without the corpus to evaluate these options against each other.

As a black-box fuzzer, the TSTL-based fuzzer (in swarm [4]

mode) generates inputs without any runtime SUT knowledge.

The TSTL-based fuzzer for SOLC was built after the Solidity

development team observed that AFL stopped finding bugs

after long periods of time. We expect the TSTL-based fuzzer

to be more effective than AFL. A second version of the TSTL-

based fuzzer was subsequently develeoped which adds more

constructs to the grammar used to generate SOLC contracts;

we expect the second version to perform better than the first.

C. Results and Discussion

Our results are shown in Tables I and II. Fuzzer appeal

values are across 10 separate runs, with the mean and standard

deviation given. We split our discussion by case study below.

1) Z3: Depending on how we limit the experiments, the

two fuzzers perform very differently. The semantic fuzzer

is significantly slower than the syntactic one. With this in

mind, if the generation is time-limited, the semantic fuzzer

generates only around 1,000 inputs in 24 hours. In contrast,

the syntactic fuzzer creates an input set with 39,630 inputs in

the same amount of time. Each fuzzer found a single distinct

bug; there was no overlap between the fuzzers. While counting

bugs and triggers is uninformative for comparison here, fuzzer

appeal reveals that there are meaningful differences between

the semantic and syntactic fuzzers, with the semantic fuzzer

revealing more behaviors.

When the generation is size-limited (with a limit of 6,000

inputs), cutting the fuzzers off when they reach the limit is

equivalent to running the semantic fuzzer for 10 days, and the

syntactic for 8h. This scenario is interesting for users running

fuzzers indefinitely, who prioritize fuzzers which yield better

overall results. We see that even with a third of the input set

removed, the syntactic fuzzer still generates a similar fuzzer

appeal (27.98) as before (34.02). The semantic fuzzer has a

much higher appeal (220.9 vs. 43.0), however. This increase

corresponds to the behavior map having more patterns (8 when

time-limited, but 66 when size-limited). This increase in fuzzer

appeal reveals that the semantic fuzzer is able to explore a

much larger space of behaviors given more time, whereas the

syntactic fuzzer’s performance plateaus. We know this despite

the fact that only two bugs are in play.

2) GCC: Fuzzer appeal of vanilla CSMITH is ~0.15 for

both time- and size-limited cases. From this, we conclude that

vanilla produces only a narrow range of behavior patterns,

confirmed via manual inspection. Only one bug was found.

The swarm result differs between the two runs, but com-

bining the time- and size-limited runs, the fuzzer found 3

513

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 31,2022 at 10:41:57 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Evaluation results with 24h time limit.

Target Versions Runs Fuzzer Appeal

Z3 23 10
Syntactic 34.02± 1.95

Semantic 43.00± 1.02

CSmith 10 10
Vanilla 0.13± 0.02

Swarm 20.20± 4.76

SolC 7 10
AFL 1.88± 0.02

TSTL 6.22± 4.16

TABLE II: Evaluation results with 6,000 input limit.

Target Versions Runs Fuzzer Appeal

Z3 23 10
Syntactic 27.98± 4.65

Semantic 220.9± 12.5

CSmith 10 10
Vanilla 0.15± 0.01

Swarm 14.56± 6.5

SolC 7 10
AFL 3.93± 0.02

TSTL 6.28± 2.71

distinct bugs, two of which involved crashes. The fuzzer

appeal is about two orders of magnitude higher than that of

vanilla CSMITH, 14.56 when size-limited and 20.20 when

time-limited. The increased time-based advantage shows that

swarm testing is faster (428,880 generated inputs in 24h), and

that numerous new input patterns are generated in this time,

rather than repeating old patterns. In contrast, vanilla CSMITH

fuzzer appeal remains largely unchanged with more inputs.

Our results are best understood in the context of the original

swarm testing paper results [4]. There, results for any one

compiler and version were sometimes inconclusive, and the

difference in coverage, which required a large number (14) of

24 hour runs to measure, was less than 2% for both GCC

and Clang. Single target bug-counting or coverage results

suggested that swarming offered only a marginal improvement.

Only the collection of results from counting bugs over a

large set of compilers and versions allowed the authors to

conclude that swarm testing was much more effective, finding

an additional 31 bugs with a 42% improvement. Fuzzer

appeal avoids the need to classify behaviors as buggy or

non-buggy, and (using 7 fewer compiler versions) even more

conclusively shows the improvement of swarm over vanilla, in

terms not just of input diversity but of input-output behavioral
diversity. Only the large number of crash bugs present in the

compiler versions allowed the original swarm paper to reach

this conclusion; in a setting with fewer crash bugs and more

semantic bugs requiring developer confirmation to distinguish,

or simply with fewer bugs, there would be no easy way to

accurately measure swarming’s impact.

Unlike coverage, fuzzer appeal effectively captures input

diversity. For example, a compiler expert examining vanilla

Fig. 1: Coverage for SOLC testing

CSMITH tests would conclude that most tests are “very sim-

ilar” programs; the narrow difference in coverage compared

to swarming CSMITH (< 2%) shows that coverage does not

reflect this similarity. The fact that CSMITH detected many

bugs means that there are subtle differences, but at a high level

the inputs have low entropy and are simple to “explain”. The

same expert would note that swarm-produced C programs are

often distinctive (e.g., “this program lacks pointers, and that

one has many goto statements. . . ”). This information cannot

be represented by coverage percentage, or even mutation

scores requiring many CPU-months to produce. Coverage,

mutants, and small sets of bugs only scratch the surface of

behavioral variety, hence the limitations of the correlations

reported between these and fault detection [27]–[30].

3) SOLC: Tables I and II show the AFL run that uses

a seed corpus and the second (empirically better) version

of the TSTL-based fuzzer. No bugs or triggers were found,

representing the most difficult case for fuzzer comparison.

Figures 1 and 2 show, respectively, code coverage and

fuzzer appeal for the 10 runs of each approach to SOLC

testing we tried, for both 12 and 24 hour time-limited runs.

AFL+ means AFL using a seed corpus of example contracts

included in the SOLC distribution. Seeded AFL produces

much higher code coverage than the TSTL fuzzers, but
much lower fuzzer appeal. AFL tests primarily the parser,

whereas the TSTL fuzzers focus on fuzzing core compiler

functionality, generating degenerate, deeply-nested constructs

that usually parse. While code coverage alone indicates the

TSTL fuzzers are ineffective, fuzzer appeal shows that they are

exploring complex compiler behaviors invisible to coverage.

Sure enough, when all fuzzers were ran longer, the TSTL

fuzzers found two new bugs in SOLC3 (now patched).

3https://github.com/ethereum/solidity/issues/{3738, 3759}
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Fig. 2: Fuzzer appeal for SOLC testing

IV. RELATED WORK

To the best of our knowledge, Klees et al. [5] is the

only paper which extensively looks at the problem of fuzzer

comparison. Klees et al. analyze the evaluations of 32 fuzzing

papers, and find flaws in them all. Only 7 evaluations had

meaningful bug-based comparisons, and these were all based

on fuzzer test suites (Section V-B4) instead of arbitrary bugs.

Klees et al. note a number of assumptions authors make

with their evaluations, experimentally demonstrate these as-

sumptions to be false, and show how this can lead to faulty

conclusions. For example, they show that heuristic techniques

for discarding duplicate triggers are highly inaccurate, leading

unpredictably to bug overcounting and undercounting. Klees

et al. underscores the importance of our work: it establishes

that bug-based evaluations are preferred, but surprisingly rare.

V. COMPARING FUZZER COMPARISON METHODS

In this section, we qualitiatively compare fuzzer appeal

with other methods commonly used in the literature. Our

comparison is based on three properties:

1) Practicality: can the method reasonably be used in prac-

tice? Methods that require prohibitive amounts of manual

labor or developer interaction are impractical.

2) Accuracy: how accurate are the results from the metric?

Inaccurate metrics may lead to incorrect conclusions.

3) Generality: can the metric be applied to arbitrary SUTs

and fuzzers? E.g., requiring source code limits generality.

Table III summarizes our comparison results. Fuzzer appeal

is the only method which simultaneously offers high practical-

ity, accuracy, and generality. The rest of this section explains

how we arrived at these results. We divide our discussion into

bug-agnostic and bug-aware approaches.

Comparison Metric Practicality Accuracy Generality
Code Coverage High Very Low Low*
Mutation Testing Medium Low-Medium Low*
Fuzzer Appeal High High High
Sets of Bugs Low High High
Bug Count Low High High
Crash Bug Count Med-High Medium High
Preselected Bug Count High Med-High Low
Trigger Count High Low High
Trigger Percentage High Very Low High

TABLE III: Qualitative comparison of fuzzer comparison

metrics. *Assumes coverage/mutants are based on source code.

A. Bug-Agnostic Methods

Bug-agnostic approaches are highly practical, as they do not

identify bugs, do not involve developers, and operate without

SUT specifications. Specific methods are discussed below.

1) Code Coverage: For fuzzer evaluation purposes, more

code coverage is better. Tools measuring code coverage are

widely available, it is simple and inexpensive to gather. How-

ever, code coverage has been found to be a poor metric even

in simple settings [29], [31], and is only weakly correlated

with bug-finding power [5], making it inaccurate. Additionally,

code coverage is best performed on possibly unavailable SUT

source code, harming its generality.

2) Mutation Testing: Mutation testing [32] is based on

modifying a SUT’s source code with individual modifications

called mutants. Ideally, mutants produce different output than

the SUT under specific inputs, and better fuzzers find more of

these inputs. Mutation testing is generally considered more

reliable than code coverage (e.g., [33]) hence we give it

higher accuracy in Table III. However, like code coverage,

mutation testing is best performed on SUT source code, harm-

ing generality. Optimizing mutation testing without significant

trade-offs is difficult [34], reducing its practicality, due to its

“blindness” regarding what is or is not important.

3) Fuzzer Appeal: Our method bears resemblance to mu-

tation testing, where separate software versions are analogous

to mutants. However, these versions are created by develop-

ers themselves, as opposed to being artificially created. As

such, we know software versions are individually important:

developers would not bother to make them otherwise. Whereas

mutation testing is based on discovering artificially injected

code changes, fuzzer appeal is based on discovering developer-

created code changes, improving accuracy. Fuzzer appeal only

needs SUT binaries, improving generality as well.

B. Bug-Aware Methods

In order to accurately identify bugs, bug-aware methods

must solve two problems:

1) The input classification problem/testing-oracle prob-

lem [6], involving identifying which inputs reveal bugs.

2) The trigger grouping problem/duplicate trigger removal

problem, involving mapping triggers to distinct bugs.

We differentiate bug-aware metrics by how they solve these

two problems. We discuss specific bug-aware metrics below.
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1) Sets of Bugs: This method is based on qualitatively

comparing the sets of bugs exposed by multiple fuzzers, and

can yield non-comparable results. For example, if fuzzer A

finds bugs {b1, b2, b3}, and fuzzer B finds bugs {b4, b5, b6}, we

cannot say which is better, as they find completely different

bugs. Since sets of bugs is based on real bugs found, this

technique is the most accurate. However, close developer

communication is usually required to identify triggers and

remove duplicates, making it impractical. If multiple SUTs

exist which follow the same specification (e.g., C compilers),

differential testing [3] can be used to automatically identify

triggers, but trigger grouping is still a problem. Likely due

to its laborious nature, we are aware of only one actual

comparison based on sets of bugs, namely Holler et al. [1].

2) Bug Count: Bug count uses sets of bugs, but compares

based on set cardinality. This trades accuracy for a simple

numeric comparison. However, this technique is still labor-

intensive, making it impractial. Like sets of bugs, bug count

is rarely used in practice, likely for the same reasons. Yang et

al. [2], Le et al. [35], and Dewey et al. [24] use bug count.

3) Crash Bug Count: This method is like bug count, but

considers only crash bugs, which are trivially identifiable (e.g.,

non-zero exit status). Trigger grouping is usually made simpler

by crash-specific output describing how the SUT crashed

(e.g., stack traces), enabling a variety of heuristics (e.g.,

messages [7], coverage profiles [9], fuzzy stack hashes [10]).

For these reasons, crash bug count is much more practical. The

downside of focusing on crash bugs is that we tacitly assume

that crash bugs are representative of all bugs. This is untrue, as

shown by techniques which are more effective at finding non-

crash bugs (e.g., Le et al. [35]). We observe that evaluations

based on crash bugs are more common, arguably due to

increased practicality. Both Yang et al. [2] and Groce et al. [4]

use crash bugs extensively, and most papers evaluting AFL-

like fuzzers consider only crash bugs (see Klees et al. [5]).

4) Preselected Bug Count: This is based on first selecting

previously fixed SUT bugs. For each bug, two SUT versions

are created: one with and without the bug. Both versions

are then fuzzed, and any output difference indicates the bug

is found, simplifying input classification. Classification is

similarly simple: only one trigger per version pair is recorded.

As both trigger identification and classification are au-

tomatable, this method is very practical. Additionally, since

version pairs are made from real bugs and all bugs are

usable, this method is also accurate. However, this method is

nonetheless problematic. Initial bug selection and version pair

construction is a laborious process; highlighting this difficulty,

such construction is the main contribution of Just et al. [36].

Each version pair must contain only a single bug to find, or else

this will undercount actual bugs found. This assumes that one

version in the version pair is correct, which is unlikely for most

software, so undercounting is likely. Typically, authors use pre-

created sets (e.g., Defects4J [36]), as opposed to creating their

own. As such, we conclude that the use of preselected bugs

is practical, but the creation of preselected bug suites is not.

Table III assumes that an existing suite is available, reflect-

ing typical usage. This makes such suites highly practical.

However, by limiting ourselves to preselected bugs, generality

is correspondingly low: we can only test SUTs with existing

suites, and even then we can only consider bugs in the suites.

As most SUTs lack existing suites, this approach is usually

inapplicable; there is no suite for C compilers (precluding

Yang et al. [2], Groce et al. [4], Le et al. [35], Lidbury et

al. [13]), JavaScript interpreters (precluding Holler et al. [1]),

the Rust compiler (precluding Dewey et al. [24]), or SMT

solvers (precluding Brummayer et al. [14]). Additionally, suite

reuse risks overfitting fuzzers to small sets of known bugs [37].

Despite the problems, such suites are popular, and all 7

meaningful bug-based evaluations in Klees et al. [5] use them.
5) Trigger Count: This metric simply counts triggers, ig-

noring the grouping problem. Often, only crashes are con-

sidered, simplifying input classification. Counting triggers is

very practical, at the cost of near-total accuracy loss; 0 triggers

means no bugs were found, and non-zero means at least one

bug was found. Yang et al. [2] explain that this metric can be

easily gamed: randomly find a trigger, then generate the same

trigger ad infinitum. Chen et al. [7] show that trigger counts

often do not correlate with bug counts. This metric is used in

Brummayer et al. [14], Yang et al. [2], and Lidbury et al. [13].
6) Trigger Percentage: This metric uses trigger count, but

reports the percentage of inputs which were triggers instead

of the count. This requires the same work as trigger count,

making it similarly practical. However, its accuracy is even

worse, as it can hide poor fuzzer generation rates. For example,

if a fuzzer takes days to generate one input, but the input is a

trigger, its trigger percentage is 100%. This metric is used in

Yang et al. [2] and Lidbury et al. [13].

VI. CONCLUSION

Fuzzer appeal is a new methodology and metric for

comparing fuzzers. Fuzzer appeal avoids the problems intro-

duced when comparing fuzzers via bug-counting, which is

necessarily resource-intensive, ad-hoc, and non-reproducible.

Fuzzer appeal requires only that the SUT used in comparison

of the fuzzers has an extensive version history; the actual

computation of fuzzer appeal can be completely automated.

There are no restrictions on the fuzzer types being compared

(white-box, black-box, etc.) or on the types of SUT inputs and

outputs, however they are derived. As long as there is a way to

compare SUT outputs for equality, fuzzer appeal is applicable.
We evaluate fuzzer appeal via three case studies: fuzzing

the Z3 SMT solver, the GNU C compiler, and the SOLC

smart contract compiler. Our evaluation shows that fuzzer

appeal agrees with prior results but is much easier to compute.

Additionally, fuzzer appeal can meaningfully compare fuzzers

even without bugs, unlike bug- or trigger-based metrics. While

further case studies are necessary to conclusively demonstrate

fuzzer appeal’s superiority, our evaluation shows that fuzzer

appeal is promising and worth further investigation.
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