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ABSTRACT
JavaScript-based browser addons are a tempting target for
malicious developers—addons have high privileges and ready
access to a browser user’s confidential information, and they
have none of the usual sandboxing or other security restric-
tions used for client-side webpage JavaScript. Therefore,
vetting third-party addons is important both for addon users
and for the browser providers that host official addon repos-
itories. The current state-of-the-art vetting methodology is
manual and ad-hoc, which makes the vetting process diffi-
cult, tedious, and error-prone.

In this paper, we propose a method to help automate this
vetting process. We describe a novel notion of addon se-
curity signatures, which provide detailed information about
an addon’s information flows and API usage, along with a
novel static analysis to automatically infer these signatures
from the addon code. We implement our analysis and em-
pirically evaluate it on a benchmark suite consisting of ten
real browser addons taken from the official Mozilla addon
repository. Our results show that our analysis is practical
and useful for vetting browser addons.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Pro-
gram analysis

General Terms
Security, Verification

Keywords
Static Analysis, JavaScript, Browser Addons

1. INTRODUCTION
The web-browser addon framework is a powerful and pop-

ular mechanism for extending browser behavior—thousands
of third-party developers are creating addons, and browser
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users have downloaded billions of copies [1]. These addons
have almost complete access to a user’s information: browser
history, cookies, passwords, clipboard, geo-location, mouse
and keyboard actions, the local filesystem, and more. Ma-
licious addons are trivially easy to write, and yet can be
difficult to detect. Thus, vetting third-party addons is crit-
ical both for users (whose information is at risk) and for
browser providers (whose reputations are at risk). However,
the current vetting process for addons submitted to official
addon repositories is mostly manual and completely ad-hoc.

Our goal is to help automate this vetting process by creat-
ing an analysis to automatically infer security signatures for
JavaScript-based browser addons. A security signature cap-
tures both (1) information flows between interesting sources
and sinks, for example, from the current browser URL to
a network message; and (2) interesting API usage, for ex-
ample, to detect deprecated or unsafe APIs. API usage in-
ference is treated as a special case of information flow—in
essence, can any information potentially flow to a use of that
API. This signature inference analysis can be used by offi-
cial addon repositories upon addon submission (and also by
third-party developers prior to submission) to detect poten-
tial security problems, thus reducing the vetting burden and
increasing addon security.

1.1 Key Challenges
We must address three key challenges to enable security

analysis of browser addons:

1. Flexible Security Policies: Naively, we might ex-
pect to use a standard information flow analysis [34] to
establish the security of an addon. For such an analy-
sis, we would use a security lattice to specify a security
policy describing allowable information flows, and re-
port any information flows in the addon that violate
the specified policy. Unfortunately, there is no single
security policy (and hence no single security lattice)
that is suitable for all addons. Whether an addon’s
information flow is secure or not depends largely on
that addon’s intended purpose. For example, the cur-
rent URL being browsed by the user should usually
be private. However, if an addon’s intended purpose
is send URLs over the network to an URL shortener
service, then this information flow is expected and al-
lowed. There are many other examples of information
flows that would usually be considered insecure, but
that are allowable given the intended purpose of the
addon. Thus, we need a more flexible solution than
traditional information flow analysis.



2. Classifying Information Flows: Traditional infor-
mation flow analysis simply reports whether a leak (a
flow violating the given security policy) might occur.
However, this information alone is not useful for our
purpose—there are many possible ways for informa-
tion flow to happen, with varying levels of importance
and concern. We must be able to classify the infor-
mation flows to aid the addon vetter in their task and
enable them to understand exactly what the addon is
doing. This requires a more discriminating analysis
than traditional information flow.

3. Inferring Network Domains: A large part of addon
security concerns the network domains that the addon
communicates with. In JavaScript, these domains are
created and passed around in the form of strings. It re-
quires careful and precise analysis to recover the actual
network domains from these strings.

1.2 Our Contributions
To meet these challenges, we present the following contri-

butions:

1. Annotated Program Dependence Graph: We base
our analysis on the Program Dependence Graph (PDG)
[19]. Defining and implementing a PDG for JavaScript
is novel; moreover, we extend the classic definition
with a novel set of graph annotations that allow us
to classify various information flows according to their
natures. We use the annotated PDG specifically for
information flow in this work, but it can be more gen-
erally useful, e.g., for program slicing, code obfusca-
tion, code compression, and various code optimiza-
tions. The annotated PDG definition and construction
algorithm are described in Section 3.

2. Security Signatures: To accomodate the fluid na-
ture of addon security policies, we develop a novel
notion of addon security signatures. Rather than at-
tempting to enforce a specific policy, instead we infer
interesting flows and API usages and present them to
the vetter, allowing them to compare the inferred sig-
nature against the addon description to decide whether
the addon should be accepted. We define what consti-
tutes a signature and how to construct a signature from
the annotated PDG. The definition of security signa-
tures and their construction are described in Section 4.

3. Prefix String Analysis: Inferring network domains
from strings requires precise analysis, but that anal-
ysis must also remain tractable. We have defined a
sweet-spot in this space by developing a prefix string
analysis that is precise enough to compute most of
the statically-determinable network domains while still
retaining practical performance. This analysis is de-
scribed in Section 5.

4. Evaluation: Finally, we evaluate the usefulness and
practicality of our work by inferring security signatures
for a set of ten real browser addons taken from the
Mozilla Firefox offical addon repository. The evalua-
tion and results are described in Section 6.

2. BACKGROUND
In this section we provide necessary background informa-

tion on addons, as well as illustrative examples (taken from
real addons) of how addons can violate user privacy.

Addon Security Context.
Modern web-browsers offer the ability to extend browser

behavior with user-installed addons (also called extensions).
Addons1 are written in JavaScript by third-party developers;
they have much higher privileges than client-side JavaScript
programs, and they are not subject to the sandboxing and
other security restrictions that exist for client-side programs.
Proof-of-concept malicious addons have been developed that
demonstrate how easily such privileges can be misused [2,
3], and other researchers have demonstrated that even non-
malicious addons can be exploited to break security [33, 11].
These are not just theoretical problems; for example, the
Mozilla vetting team has seen a number of submitted addons
that contain malicious code copied from these published ex-
ploits [8].

Addon Execution.
Addons use an event-driven programming model: they

continuously execute a loop responding to events such as
mouse movement and clicks, keyboard entry, page loads,
network responses, timeouts, etc. When the browser first
starts up the addon code is fully evaluated, during which a
set of event handlers are registered. Then the addon enters
an loop in which the following two steps are executed in-
finitely often: (1) if the event queue is not empty, then an
event is pulled off the event queue; (2) if there is an event
handler corresponding to the given event, then the handler is
invoked and evaluated to completion. More event handlers
can be registered and existing handlers can be de-registered
during the event handling phase.

Addon Vetting.
The current addon vetting process for official addon repos-

itories employs volunteers who manually inspect addon code.
There are no fully documented or precisely specified secu-
rity policies, rather, the vetters look for “code smells”. Any
addon that does not pass the sniff test is rejected. Dynamic
code injection is particularly discouraged, given the difficulty
in statically determining what the dynamically-injected code
will do. This fact is encouraging for static analysis, because
unlike client-side JavaScript (which uses eval and related
APIs heavily) we can safely disallow addons from using dy-
namic code. Our analysis reports any potential use of these
restricted APIs.

Privacy Leaks.
An addon’s elevated privileges make it trivial to leak pri-

vate user information. We concern ourselves with two kinds
of information flows: explicit flows (due to data depen-
dencies) and implicit flows (due to control dependencies).
Timing and termination flows are beyond the scope of this
work. We give two examples derived from actual informa-
tion flows discovered by our analysis in real addons that
have been downloaded millions of times. In these exam-

1Extensions to browsers written in native code are referred
to as browser plugins, and they are not the focus of our
work.



ples, the current URL being browsed by the user is ac-
cessed by the addon via content.location.href, and the
call XHRWrapper(publicServer) sets up a cross site request
to the network domain publicServer. Consider the code:

function ajax(params) {

var data = params["data"];

request = XHRWrapper(publicServer);

request.send("url is: " + data);

}

ajax({ data: content.location.href });

Here, the current URL is used to construct the data field
of an object literal passed as an argument to ajax. The
function ajax creates a network request to publicServer

over which the data field of its formal parameter is sent,
thus explicitly leaking the private URL information. Now
consider the code:

window.addEventListener("load", check, false);

function check(e) {

var seen = false;

if (content.location.href == "sensitive.com")

seen = true;

var request = XHRWrapper(publicServer);

request.send(seen);

}

Here check is registered as an event handler for page load
events, thus, whenever the user loads a new page check is
executed. check sets seen to true only if the current URL
is sensitive.com, and then sends seen over the network to
publicServer. This code implicitly leaks private informa-
tion about whether the user visits sensitive.com.

These are just two—certainly non-exhaustive—ways in
which privacy can be breached by addons. Our main goal
in this work is to develop a static analysis for JavaScript
addons that can reliably and precisely detect these kinds of
privacy leaks, as well as distinguish between various kinds
of leaks.

3. ANNOTATED PDGS FOR JAVASCRIPT
A Program Dependence Graph (PDG) [19, 10, 7] is an

explicit representation of a program’s data and control de-
pendencies. We use an novel extended variant of PDGs as a
basis for our security signature inference (described in Sec-
tion 4). The relation between information flow and program
dependencies has been noted before (e.g., Abadi et al [6])
and has previously been exploited for information flow anal-
ysis of Java bytecode [22]. Our novel contributions are (1)
defining PDG construction for JavaScript; and (2) a set of
annotations for the PDG that allow us to classify the various
types of information flows found in a program.

We assume we are given a base analysis for JavaScript
that is flow- and context-sensitive and computes a reduced
product of pointer analysis (what objects a reference may
point to), string analysis (what set of strings a value may
represent), and control-flow analysis (what functions a call
may refer to). Any such base analysis can be used for our
technique; two existing analyses that meet these require-
ments are JSAI [30] and TAJS [27]. From this information
we compute the following as input to our PDG construction:

1. A context-sensitive interprocedural control flow graph
(CFG), with one node per statement per context.

2. Read and write sets for each statement under each con-
text, consisting of the set of variables and the set of
(object, property) pairs that the statement may read
from or write to. JavaScript uses computable property
accesses, i.e., an object property name is a string that
can be computed at runtime, unlike languages such as
Java where object fields are statically known. There-
fore, the object properties in the read/write sets are
actually abstract strings (elements from the abstract
string domain used in the base analysis) representing
potentially multiple possible concrete property names.

In the rest of this section, we explain how to use this in-
formation to construct an annotated PDG. We first define
the annotated PDG, then describe the two stages of PDG
construction: constructing the annotated data dependence
graph (DDG) and constructing the annotated control de-
pendence graph (CDG).

3.1 Defining the Annotated PDG
A classic PDG is a graph (V,E) such that v ∈ V are the

program statements and there is an edge v1 → v2 ∈ E if
there is a data or control dependence from v1 to v2. State-
ment v2 is data dependent on statement v1 if v1 writes to a
location in memory, v2 reads from that location in memory,
and the value read by v2 could potentially be the value writ-
ten by v1. Statement v2 is control dependent on statement
v1 if the execution of v1 controls the number of times that
v2 is executed (e.g., v1 is the guard of a conditional and v2
is contained in one branch of that conditional). Information
can flow from statement v1 to statement v2 if there is a path
in the PDG from v1 to v2.

In order to classify information flows, we annotate the
edges of the PDG to denote how each particular edge was
derived from the program. We can broadly classify edges
based on whether they correspond to data or control de-
pendencies, but an even finer granularity of classification is
useful. We describe and motivate the different possible an-
notations here.

Data Dependence Annotations.
We can classify data dependence edges as strong or weak.

A strong data dependence arises between v1 and v2 if v1
writes to a single memory location, v2 definitely reads from
that exact same memory location, and the value it reads is
definitely the value written by v1. A weak data dependence
arises between v1 and v2 if either v2 only possibly reads
from the same memory location as v1 writes to, or if that
memory location was possibly over-written by another value
during the execution between v1 and v2. The idea behind
this classification is that information flow along strong data
dependence edges is more likely to be interesting/relevant
than that along weak data dependence edges.

Control Dependence Annotations.
We can classify control dependence edges as local or non-

local. We can further subdivide non-local control edges into
explicit or implicit. A local control edge arises from struc-
tured local control flow, such as conditionals or loops; all
other control edges are classified to be non-local. An ex-
plicit non-local control edge arises from explicit (i.e., syn-
tactically visible) control-flow jumps in the code, such as a
break or continue instruction inside a loop, or an excep-



tion thrown using the throw instruction, or returning from
a function using a return instruction. An implicit non-local
control edge arises from implicit (i.e., syntactically invisi-
ble) exceptions that can be thrown by various JavaScript
instructions (e.g., accessing a property of the undefined

value, or attempting to call a non-function). It is useful
to distinguish these categories; for example, consider line 20
in Figure 1, and suppose that the analysis infers obj to be
potentially undefined at this line. Since this statement may
raise an implicit exception, the statement at line 21 and all
the statements that follow inside the try block are control
dependent on the conditional on line 19 (because the con-
ditional evaluation of statement 19 dictates whether or not
these statements execute), causing many additional edges to
be added to the PDG. Most of these additional edges are a
gross over-approximation of the actual control-flow during
program execution. Thus, information flow along local con-
trol edges is likely to be more interesting/relevant than that
along non-local control edges, and information flow along
explicit non-local control edges are in turn likely to be more
interesting/relevant than that along implicit non-local con-
trol edges.

Amplified Control.
Finally, we can also classify control edges (independently

from the classifications above) as amplified or unamplified.
An amplified control edge is contained within a cycle of the
CFG, whereas an unamplified control edge is not. This is
interesting for information flow because an unamplified con-
trol edge can convey at most one bit of information (i.e.,
whether a statement is executed or not), whereas an am-
plified control edge could potentially convey an arbitrary
number of bits of information (one for each iteration of the
loop or recursive call).

Annotation Grammar.
From these various classifications, we define the following

annotation grammar:

ann ∈ Annotation ::= data | control

data ∈ DataDep ::= datastrong | dataweak

control ∈ CtrlDep ::= ctrl | ctrlamp

ctrl ∈ Ctrl ::= local | nonlocexp | nonlocimp

The annotated PDG is then a graph (V,E) such that v ∈
V are the program statements and there is an edge v1

ann−−→
v2 ∈ E if there is a data or control dependence from v1 to v2
that matches the criteria of annotation ann. The remaining
subsections describe how we construct the PDG and assign
the appropriate annotations to its edges.

3.2 Constructing the Annotated DDG
The first phase of PDG construction creates the Data De-

pendence Graph, which contains all of the data dependence
edges of the eventual PDG. In JavaScript, data dependencies
arise from reads and writes to variables and to object proper-
ties. For statement v, let ReadVar(v) be the set of variables
that v can read from, ReadProp(v) be the set of (object,
property) pairs that v can read from, WriteVar(v) be the
set of variables that v can write to, and WriteProp(v) be
the set of (object, property) pairs that v can write to; these
sets are computed from the base analysis described earlier.

Dynamically adding, updating, or deleting a property are all
considered object property writes. Recall that the properties
in these (object, property) pairs are actually abstract strings
representing possibly multiple concrete property names.

Each element of these sets is qualified as strong (a defi-
nite read or write) or weak (a possible read or write). Def-
inite reads/writes occur for a variable when its associated
abstract memory location is guaranteed to correspond to a
single concrete memory location. Definite reads/writes oc-
cur for a (object, property) pair when a similar criterion
holds for the object and the property abstract string corre-
sponds to a single, exact concrete string. Note that definite
writes correspond to strong updates in static analysis, and
thus write sets that are qualified to be strong are singleton
sets. We use normal set intersection for the ReadVar(·) and
WriteVar(·) sets, but for the ReadProp(·) and WriteProp(·)
sets we must define a new set intersection operator that
accounts for the abstract string property names (which ab-
stractly represent sets of concrete strings). We define the
operator e as: S1 e S2 = {(obj , prop) | (obj , prop1) ∈
S1, (obj , prop2) ∈ S2, prop = prop1 u prop2 , prop 6= ⊥}.

There is a DDG edge v1
datastrong−−−−−−→ v2 if there is a CFG path

from v1 to v2 and both of the following conditions hold:

• WriteVar(v1) ∩ ReadVar(v2) = {var} and var is
strong in both sets, or WriteProp(v1) ∩ ReadProp(v2)
= {(obj , prop)} and (obj , prop) is strong in both sets.
In other words, v2 definitely reads from the memory
location written by v1.

• There is no statement v3 along any path from v1 to
v2 such that WriteVar(v1) ∩ WriteVar(v3) 6= ∅ or
WriteProp(v1)eWriteProp(v3) 6= ∅, i.e., the value read
by v2 is definitely the value written by v1.

There is a DDG edge v1
dataweak−−−−−→ v2 if there is a CFG path

from v1 to v2, there is not an edge v1
datastrong−−−−−−→ v2, and both

of the following conditions hold:

• WriteVar(v1) ∩ ReadVar(v2) 6= ∅ or WriteProp(v1) e
ReadProp(v2) 6= ∅. In other words, v2 possibly reads
from the memory location written by v1.

• There at least one path from v1 to v2 such that for any
statement v3 on that path, WriteVar(v1)∩WriteVar(v3)
is empty or contains only weak elements and
WriteProp(v1) e WriteProp(v3) is empty or contains
only weak elements. In other words, the value read by
v2 is possibly the value written by v1.

Figure 1 and Figure 2 give an example program and the as-

sociated PDG to illustrate these points. The edge 1
datastrong−−−−−−→

2 exists because we can determine definitely that the call ar-
gument at line 2 refers to the (object, property) pair created

at line 1. The edge 1
dataweak−−−−−→ 3 exists because (assuming

the analysis cannot exactly determine the return value of
getString) we don’t know which property of the object de-
fined at line 1 is being accessed.

3.3 Constructing the Annotated CDG
The final phase of PDG construction creates the Control

Dependence Graph (CDG); the PDG is the union of the
DDG and CDG. The CDG is constructed using standard



1 var data = { url: doc.loc };

2 send(data.url);

3 send(data[getString()]);

4 func();

5 if (doc.loc == "secret.com")

6 send(null);

7 var arr = ["covert.com", "priv.com"/*,...*/];

8 var i = 0, count = 0;

9 while(arr[i] && doc.loc != arr[i]) {

10 i++;

11 count++; } // end while

12 send(count);

13 try {

14 if (doc.loc != "hush-hush.com")

15 throw "irrelevant";

16 send(null);

17 } catch(x) {};

18 try {

19 if (doc.loc != "mystic.com")

20 obj.prop = 1;

21 send(null);

22 /* ..... */

23 } catch(x) {}

Figure 1: An example program to show the various annota-
tions of the PDG. We assume the following for this example:
doc.loc is the current browser url; the send method sends
it arguments over the network; the base analysis infers obj

to either reference an object or null; func is inferred to
be either a callable function or undefined; and the call to
getString() returns an unknown string.
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Figure 2: A subset of the annotated PDG for the example
program in Figure 1, to illustrate the interesting edges and
nodes.

techniques [19], but we stage its construction in order to
properly annotate the CDG edges. We also omit from the
CDG all edges due to uncaught exceptions (for example, in
Figure 1, we omit edges due to a potential implicit exception
at line 4). If we included those edges, then for all statements
that may throw an exception outside of a try/catch block we
would need an edge to every other reachable statement in
the CFG. For our purposes omitting these edges is sound be-
cause uncaught exceptions result in termination, and we are
not considering termination leaks in our security analysis.

We construct the annotated CDG in four stages in the
following order:

1. Create a pruned CFG by removing all edges arising
from non-local control-flow (i.e., exceptions and jumps).
Compute CDG1 from the pruned CFG using standard
techniques, and annotate all edges with local.

2. Create another pruned CFG from the original CFG by
removing all non-local control-flow edges arising from
implicit exceptions. Compute CDG2 from this pruned
CFG, subtract any edges present in CDG1, and anno-
tate all remaining edges with nonlocexp .

3. Compute CDG3 from the full CFG, subtract any edges
present in CDG1 or CDG2, and annotate all remaining
edges with nonlocimp .

4. Update all three CDGs so that any annotation ctrl
for an edge whose source node is contained within a
CFG cycle is updated to ctrlamp . The final CDG is
CDG1 ∪ CDG2 ∪ CDG3.

When creating a pruned CFG some nodes may become
unreachable from the CFG entry node; we add a new edge
in the pruned CFG from the entry to any such node before
computing the CDG.

In the previous example, the edge 5
local−−−→ 6 exists because

line 6’s execution depends on line 5 but there is no loop, and

9
localamp

−−−−−→ 11 exists because line 11’s execution depends on
line 9 and there is a containing loop. Line 16’s execution is
control dependent on line 14, because along its true branch,
the explicit non local control flow at line 15 can cause line

16 to not execute. Hence the edge 14
nonlocexp−−−−−−→ 16. Line

20 can potentially throw an implicit exception, because the
base analysis is assumed to infer obj to either be a reference

an object or null. Hence the edge 20
nonlocimp−−−−−−→ 21.

4. GENERATING SECURITY SIGNATURES
From the annotated PDG described in the previous sec-

tion, we can infer interesting information flows to report to
the addon vetter and classify them according to types based
on the annotations. In this section we describe the form of
the signature and how we infer signatures from the anno-
tated PDG.

4.1 Description of Security Signatures
Figure 3 gives the formal description of a security signa-

ture. A signature consists of zero or more entries, where
each entry describes either a particular information flow
from an interesting source to an interesting sink, or an in-
teresting API usage. API usage is a special case of informa-
tion flow that indicates there exists some source (interest-
ing or not) that may flow to an instance of that API. The
set of interesting sources, sinks, and APIs is given to the
analysis; in our implementation we have used the sources,
sinks, and APIs considered interesting by the Mozilla vet-
ting team (where the interesting APIs include various script
injection APIs such as Services.scriptloader and vari-
ous deprecated APIs), but they are easily configurable if de-
sired. The send sink (corresponding to a network send using
XMLHttpRequest) takes a parameter indicating the network



sign ∈ Signature ::=
−−−→
entry

entry ∈ Entry ::= src
type−−→ sink | sink

type ∈ FlowType ::= type1 | . . . | type8

src ∈ Source ::= url | key | geoloc | . . .
sink ∈ Sink ::= send(Pre) | scriptloadr | . . .

Figure 3: Grammar for a security signature sign. Pre is
the prefix string domain described in Section 5; it is used to
indicate the network domain being communicated with. We
give a subset of the complete list of interesting sources and
sinks. The eight flow types are described in the text and
Figure 4.

type1 (datastrong)

type2 (dataweak )

type3 (localamp)

type4 (local) type5
(
nonloc

amp
exp

)
type6 (nonlocexp) type7

(
nonloc

amp
imp

)
type8 (nonlocimp)

Figure 4: Flow types ordered in a lattice of perceived
strength. Higher in the lattice indicates a more important
type of flow. Each flow type is associated with an annota-
tion from the PDG. A flow has a given type if there is a path
from source to sink using only PDG edges annotated with
any annotation at a level equal or higher in the lattice.

domain being communicated with. Each information flow
entry also has one of eight types, described further below.

An information flow between source and sink is derived
from a path in the PDG from the source to the sink. The
type of flow is derived from the annotations on the PDG
edges along that path. We order the flow types by the kinds
of edges (i.e., edges with particular annotations) we allow the
associated flow to traverse in the PDG: the more kinds of
edges allowed, the weaker the flow type. We have structured
the set of flow types into a lattice, pictured in Figure 4. Each
flow type is associated with an annotation from Annotation;
the meaning is that a flow of a given type only traverses PDG
edges annotated with the given annotation or some annota-
tion at a higher level in the lattice. This lattice is based
on our perceived strength of the type of flow—obtained by
manually examining the commonly intended and commonly
accidental kinds of flows. This lattice is the one we use in
our analysis, but the lattice is independently configurable
to accommodate changes in perceived strength of the flow
types.

Consider the examples below to better interpret the vari-
ous flow types in the lattice in the Figure 4. The strongest

flow type, type1, is assigned to information flows that only
traverse PDG edges annotated with datastrong . The type4
flow type is assigned to information flows that only tra-
verse PDG edges annotated with local, local

amp , dataweak , or
datastrong . The weakest flow type, type8, is assigned to in-
formation flows that traverse any kind of PDG edge. One
can think of a particular flow type as corresponding to a
sub-graph of the PDG containing only the allowed kinds of
edges; an information flow is assigned that flow type if (1)
there is a path from the source to the sink contained in that
sub-graph; and (2) there is not a path from the source to
the sink in the sub-graph of any higher flow type.

4.2 Inferring Signatures
Given an annotated PDG, we must infer signatures of the

form described above. Inferring the API usage part of a
signature (i.e., is there any information flow to an interest-
ing API) is straightforward: if there a reachable call state-
ment in the CFG whose call expression is data dependent
on any node (including itself) with a ReadProp(·) set con-
taining a designated interesting sink snk, then the snk API
may be used. Note that for inferring API usage we con-
sider all call expressions that are data dependent on reads
to APIs because functions can be copied and passed around
in JavaScript. Inferring the information flow entries of the
signature is more involved; the rest of this subsection ex-
plains how this is done.

We wish to characterize the set of paths between inter-
esting sources and sinks with a flow type. For each (source,
sink) pair there is a set of paths between them in the PDG;
we need to compute the strongest flow type(s) possible that
are consistent with that set of paths and their edge an-
notations (because some flow types are noncomparable in
strength, there may not be a single strongest flow type). To
describe this computation, we first define two helper func-
tions:

extend : (FlowType ×Annotation)→ FlowType

max : P(FlowType)→ P(FlowType)

The extend function takes a flow type t and extends it
with an annotation ann—the function returns the strongest
flow type t′ which includes all the edge annotations cor-
responding to the flow type t as well as ann. For exam-
ple, extend(type4, nonlocamp

exp ) = type6, and extend(localamp ,
nonloc

amp
exp ) = type5. The max function takes a set of flow

types and returns the strongest flow types in that set (again,
since there are noncomparable flow types there may not
be a single strongest flow type in the set). For example,
max ({type4, type5, type6}) = {type4, type5}.

For each source we will compute a set of flow types for
each statement in the PDG reachable from that source; the
final set of flow types are taken from the statements cor-
responding to interesting sinks. Let FlowType(v) be the
set of flow types assigned to statement v, and initialize
FlowType(v) = {type1} for all statements v. Then com-
pute the fix point over all v of the following equation:

FlowType(v) = max

 ⋃
v′ ann−−→v∈E

t∈FlowType(v′)

{extend(t, ann)}


Intuitively, FlowType(v) gives the strongest set of flow



types using which the source under consideration can reach
v. To compute this, we look at all the predecessors v′ of
v, and extend of the flow types computed at v′ with the
edge annotation ann between v′ and v, and keep only the
strongest flow types amongst these. Because we consider
all the predecessors v′ of v and edges between v′ and v, we
account for all the possible paths from the source to v. Due
to the presence of cycles in PDG, we compute a fixpoint of
these equations.

Consider the following PDG example to illustrate the flow

type equation. Let the PDG include the edges v1
nonlocamp

exp−−−−−−→

v3 and v2
nonlocamp

exp−−−−−−→ v3, with FlowType(v1) = {type4, type5}
and FlowType(v2) = {type3}. To compute
FlowType(v3), we first extend the flow types at predecessors
v1 and v2 with the corresponding edge annotations, and take
their union to obtain {type6, type5}. We then pick the
strongest flow types from these to obtain FlowType(v3) =
{type5}.

We compute the above fixpoint for the various statements
with respect to each interesting source in turn; the signature
is created by taking the flow types at each interesting sink.
If for source src the sink snk has flow types {type1, type2},
then the signature contains the entries src

type1−−−→ snk and

src
type2−−−→ snk .

5. INFERRING NETWORK DOMAINS
The most common way in which addons communicate

with network domains is to create a network request ob-
ject XMLHttpRequest and pass it a string that contains the
desired URL. To generate precise signatures, our analysis
should statically infer as many of these URL strings as pos-
sible. However, a string constant analysis (analogous to the
traditional integer constant analysis) is insufficient to deter-
mine many of these strings. Often an addon will commu-
nicate with the same domain, but dynamically extend that
domain’s URL with different suffixes, e.g., different argu-
ments to the same web application. Consider the following
code which exemplifies a common pattern found in addons:

var baseURL = "www.example.com/req?";

if (...) baseURL += "name"; else baseURL += "age";

// communicate with baseURL

A string constant analysis would infer baseURL to be an
unknown string after the conditional. Our insight is that,
for inferring the network domain contained in the string, we
only need the URL’s prefix rather than the entire URL; e.g.,
in the example above we need to infer only the base domain
www.example.com/req? and not the two URLs constructed
from that base domain.

Therefore, we augment the base JavaScript analysis (which
uses a constant string analysis) with a prefix string analysis
in order to infer these network domain prefixes. Our ab-
stract prefix string domain is similar in concept to the prefix
domain described by Costantini et al. [15], except that we
also track exact strings whenever possible—because we use
the same string domain for inferring URLs as well as object
properties, this is an important distinction for precision. We
describe our abstract prefix string domain and one example
abstract string operation for that domain, string concatena-
tion. The complete prefix domain formalization and proof

sketches of soundness are contained in the supplemental ma-
terials.2

The prefix string abstract domain is a lattice L]
p = (Pre,v

,t,u). Let �mean string prefix and let ⊕mean the greatest
common prefix; then:

• Pre is a set of (string, boolean) pairs augmented with a
bottom element: (str , b) ∈ Pre = (String×Boolean) ∪
{⊥}, such that b = true means str is an exact string
and b = false means str is a prefix of an unknown
string.

• The bottom of the lattice ⊥ represents an uninitialized
string value, and the top of the lattice > = (ε, false)
represents all possible strings.

• ⊥ v (str , b) v > for all (str , b) ∈ Pre, and (str1, b1) v
(str2, b2) iff either b2 = false and str2 � str1, or b1 =
true, b2 = true, and str1 = str2

• (str1, b1) t (str2, b2) ={
(str1, b1) if str1 = str2, b1 = b2 = true

(str1 ⊕ str2, false) otherwise

• (str1, b1) u (str2, b2) =
(str1, b1) if b2 = false, str2 � str1
(str2, b2) if b1 = false, str1 � str2
⊥ otherwise

The lattice is noetherian, i.e., it meets the finite ascending
chain condition. We describe the abstract string concatena-
tion operation + on the prefix domain as a representative
example of the set of required abstract operations. Let X
be any element of L]

p; then:

• ⊥+X = X +⊥ = ⊥

• (str1, true) + (str2, b2) = (str1 · str2, b2)

• (str1, false) + (str2, b2) = (str1, false)

6. EVALUATION
In this section we first briefly describe our analysis imple-

mentation and our benchmarks and experimental method-
ology; we then describe and discuss our evaluation results.

6.1 Implementation
We implement our signature inference analysis on top of

JSAI [30], a flow- and context-sensitive abstract interpreter
for JavaScript. JSAI, and hence our analysis, is implemented
in Scala. The analysis is performed in three passes: (1) use
JSAI to compute the CFG and read/write sets; (2) construct
the annotated PDG as described in Section 3; and (3) infer
the signature as described in Section 4.

We extend JSAI in two ways for our analysis. First,
we augment JSAI’s abstract string domain with the pre-
fix string domain described in Section 5. Second, we ex-
tend JSAI to handle browser-embedded code: we provide

2Available under the Downloads link at http://www.cs.
ucsb.edu/~pllab.



manually-written stubs for the native APIs (e.g., DOM and
XPCOM APIs) used by our benchmarks, and simulate the
addon event-handling loop by adding a loop at the end of
the addon that non-deterministically executes all registered
event handlers. Our implementation is available under the
Downloads link at http://www.cs.ucsb.edu/~pllab.

6.2 Benchmarks and Methodology
Our benchmark suite consists of real addons taken from

the Mozilla addon repository [4]. All of these addons were
vetted manually by Mozilla before being added to the repos-
itory, and have been present in the repository for years. Ta-
ble 1 lists the addons, their intended purpose, their size,
and the number of times they have been downloaded (as
an indication of their popularity). The size is given as the
number of AST nodes parsed by Rhino [5], a more accurate
representation than number of lines of code. All of these
addons, along with a set of tests showing various kinds of
information flows, are bundled with our implementation.

For expository purposes, we classify the addons into three
categories based on each addon’s summary submitted by its
developer:

Category A: Addons intended to explicitly send the
current URL information to a specified domain. For
example, LivePageRank, which sends the active URL
over the network to find out its page rank.

Category B: Addons intended to implicitly send in-
formation about the current URL or user key presses to
a specified domain. For example, YoutubeDownloader
will check whether the current URL is in fact youtube.
com before attempting to download a video.

Category C: Addons intended to communicate with
a specified domain, but without sending any inter-
esting information. For example, Chess.comNotifier
will communicate with chess.com to find out whose
turn it is to play. These addons exemplify API usage
discovery, using network communication as the API of
interest.

In order to check the precision of our inferred signatures,
we first manually write a signature for each addon based
on its developer-provided summary (this is done before we
automatically infer any signatures). We can then use the
manual signatures to compare against the automatically in-
ferred signatures: if the inferred signatures are weaker (allow
more flows) than the manual signature, it indicates either a
false positive or a misleading addon summary. We give an
example manual signature for one addon in each category:

• LivePageRank (A): url
type1−−−−→ send(toolbarqueries.

google.com). Rationale: its stated purpose is to dis-
play the page rank of the active URL, computed by
sending the URL to toolbarqueries.google.com.

• HyperTranslate (B): key
type3−−−−→ send(translate.

google.com). Rationale: it translates selected text by
using a web service, but only if the keys pressed by
the user match its defined keyboard shortcuts. Thus,
the addon can implicitly reveal information about key
presses to the domain translate.google.com. Be-
cause the addon continuously listens for key presses,
this information flow can be amplified.

• Chess.comNotifier (C): send(chess.com). Rationale:
it does not reveal information about any interesting
sources over the network, but it does communicate
with chess.com about game status.

We also measure the time taken by the analysis to in-
fer signatures for each benchmark. Our main purpose is to
show that the analysis time is reasonable; our prototype im-
plementation is written with emphasis on correctness rather
than performance, and there are multiple opportunities for
improving the performance of our implementation. We di-
vide the time taken into three phases:

Phase 1 (P1): time taken by the base analysis to
compute information assumed as input to our anno-
tated PDG construction.

Phase 2 (P2): time taken to construct the annotate
PDG as described in Section 3.

Phase 3 (P3): time taken to convert the annotated
PDG into a signature as described in Section 4.2.

To compute the timing results we run the analysis 11 times
on each benchmark, discard the first result, and report the
median of the remaining runs. The timing information is
obtained on a Mac OS X 2.3 GHz Intel Core i7 machine
with 8GB of RAM.

6.3 Results and Discussion
Table 2 summarizes the result of signature inference anal-

ysis on the benchmarks. For each addon, the analysis re-
sult is summarized as pass (the inferred signature matches
the manual signature); fail (the inferred signature has more
flows than the manual signature, and manual inspection de-
termined they were false positives); or leak (the inferred
signature has more flows and manual inspection determined
they were real). The times are given separately for each
analysis phase, as described in Section 6.2. The total time
taken by the analysis for each of the addons is under one
minute.

Five of the addons passed. Of the remainder, two failed
and three had unintended leaks. We discuss the failures and
leaks in more detail below.

Failed Addons.
The inferred signatures for LessSpamPlease and

VKVideoDownloader fail simply because the analysis was not
able to determine the exact network domain being com-
municated with. For example, VKVideoDownloader checks
whether the current URL is one of three different video
player domains, and communicates with the corresponding
domain. Our prefix abstract string domain is not expressive
enough to precisely represent all three domains, and hence
infers the final domain to be unknown. It is worth noting
that in the remaining eight out of the ten addons, our prefix
string analysis can determine the exact domains with which
the addons communicate. Both failed signatures had the
correct information flow sources, sinks, and flow types; the
only imprecision was in the network domain.

Leaky Addons.
YoutubeDownloader computes a video id taken directly

from the current URL and sends it to youtube.com; this is a



Addon Name Listed Purpose Category Size # of Downloads
LivePagerank Display PageRank for active URL A 3, 900 515, 671
LessSpamPlease Generates a reusable anonymous real mail address A 3, 696 194, 604
YoutubeDownloader Youtube video downloader B 3, 755 7, 600, 428
VKVideoDownloader Downloads videos from sites B 2, 016 459, 028
HyperTranslate Translates selected text when key shorts are pressed B 3, 576 62, 633
Chess.comNotifier Notifies your turn on chess.com C 1, 079 2, 402
CoffeePodsDeals Indicates coffee pods for sale C 1, 670 1, 158
oDeskJobWatcher Indicates oDesk job opening C 609 8, 279
PinPoints Save clips (addresses) from web text C 2, 146 7, 042
GoogleTransliterate Allows user to type in Indian languages C 4, 270 77, 413

Table 1: Real addons from Mozilla addon repository [4] used as benchmarks for our evaluation. We manually sort addons into
categories based on their behavior, the category descriptions are given in Section 6.2. The size of the benchmarks give the
number of AST nodes parsed by Rhino [5]. We also indicate the number of times a particular addon has been downloaded.

Addon Name Result Time Taken(s)
P1 P2 P3

LivePagerank pass 15.9 30.3 0.5
LessSpamPlease fail 4.0 24.0 0.1
YoutubeDownloader leak 13.2 22.4 0.2
VKVideoDownloader fail 0.7 8.7 0.1
HyperTranslate pass 9.6 30.9 0.3
Chess.comNotifier pass 0.8 2.1 0.1
CoffeePodsDeals pass 0.4 2.7 0.1
oDeskJobWatcher pass 0.4 0.9 0.1
PinPoints leak 3.6 16.9 0.1
GoogleTransliterate leak 1.8 10.87 0.1

Table 2: Addon signature inference result summary. An
addon is marked pass if the inferred signature has no more
flows than the manual signature; fail if it has more flows
and they are false positives; and leak if it has more flows
and they are real. The last three columns indicate the time
taken by the inference analysis, divided into three phases as
outlined in Section 6.2. All times are given in seconds.

real explicit information flow. While this is probably an ac-
ceptable flow, it was not described in the developer’s addon
summary and hence was unexpected. GoogleTransliterate
communicates with the transliterate web API only if the
current URL is not about:blank (i.e., the empty page); this
is an real implicit information flow, though again probably
harmless. These examples highlight the usefulness of us-
ing security signatures rather than checking against a fixed
policy: rather than a simple pass/fail result, the signature
allows the addon vetter to easily determine what types of
flows are present and whether they are acceptable or not.
Pinpoints is an interesting case. Besides communicat-

ing with yourpinpoints.com (as indicated in the developer
summary), it also communicates with maps.google.com. It
required careful reading of the extended addon description
and the addon code to determine that this was actually in-
tended behavior that should have been included in the addon
summary (the addon uses information from the Google Maps
API to improve the information it saves). This illustrates
another benefit of our signature inference, by highlighting
flows that are undocumented or only documented in the ad-
don’s fine print.

7. RELATED WORK
There have been a number of previous efforts targeting

either information flow security, security analysis specific to
JavaScript, or browser addon security. In this section we
discuss those efforts most relevant to our own work.

Secure Information Flow.
There are decades of work on secure information flow; for

details see the survey by Sabelfeld and Myers [34]. Most of
this work is based on type systems. There is some exist-
ing work on using abstract interpretation [12, 16], however
they do not target any language nearly as complex and dif-
ficult to analyze as JavaScript. Abadi et al. [6] establish a
close connection between secure information flow and pro-
gram slicing using dependencies. Hammer et al. [22] present
an information flow analysis for Java bytecode using PDGs.
They use a traditional lattice-based approach for their anal-
ysis, and apply it to a different language and domain than
we do. They also do not attempt to distinguish between the
different kinds of information flows.

Security Analysis for JavaScript.
There have been both static and dynamic (e.g., [23, 25])

approaches to JavaScript analysis; here we focus specifically
on those that contain some static component (e.g., [24, 27, 9,
26, 36, 35]), as well as some security component. These anal-
yses target client-side webpage JavaScript programs rather
than JavaScript-based browser addons, which present differ-
ent challenges and opportunities.

Justet al. [28] blend static and dynamic analyses; they
track information flow dynamically as much as possible, but
resort to static analysis to capture implicit flows. Because
of dynamic tracking, their approach requires changes to the
JavaScript runtime and incurs an average overhead of 150%.

Guarnieri and Livshits [20] define a statically analyzable
subset of JavaScript and implement a tool to enforce certain
security and reliability policies on JavaScript widgets. They
use dynamic checks to make certain the executing widget
code is within the defined subset language. Their security
policy is not formally specified and it is not clear whether
they handle only explicit flows or also track implicit flows.

Chugh et al. [14] propose a hybrid mechanism to check
certain specific types of malicious information flow in client-
side JavaScript. Since client-side JavaScript (unlike browser
addons) are allowed to dynamically load new code, they can-



not perform a whole-program analysis. Instead, their tool
performs a static analysis on all available code and infers a
set of dynamic checks necessary to enforce security. Their
technique does not scale to more general information flow
policies.

Keil and Theimann [31] propose a type-based dependency
analysis for JavaScript, and formalize their analysis for a
subset of JavaScript. Their analysis can be viewed as static
counterpart to data tainting, and they build a tool over the
TAJS [27] framework. While not a security analysis, they
claim that their analysis could be used as a basis for inves-
tigating various security properties.

Browser Addon Security.
Browser addon security has also attracted much atten-

tion. Barth et al. [13] propose a new browser addon archi-
tecture (which is now adopted by the Chrome web browser)
that reduces the attack surface of addons. They achieve
this by separating out addons into components with differ-
ent privileges and isolating the components by running them
in different processes. While Chrome requires the addon to
explicitly request access for different privileges, it does not
perform any information-flow based reasoning to figure out
what the addons do with accessible information and whether
any confidential information is being leaked.

Guha et al. [21] describe IBEX, a framework to develop
and verify secure browser addons. IBEX requires develop-
ers to write browser addons in a dependently-typed language
called Fine. Their tool can statically check if addons con-
form to policies specified in a Datalog-like policy language,
but only if the addons are written in Fine, requiring exten-
sive developer effort.

Dhawan and Ganapathy [17] describe SABRE, a system
that guards against Firefox addon security flaws by per-
forming in-browser dynamic information flow tracking of
JavaScript addons. SABRE requires extensive modifications
to the browser and the execution-time cost of SABRE is
high. Djeric and Goel [18] present another dynamic taint
tracking analysis for Firefox addons which has similar char-
acteristics. In contrast, we perform a static analysis of the
addons; this means that there is no runtime cost and that
reviewers can use their discretion to ignore warnings that
turn out to be false positives.

Bandhakavi et al. [11] describe VEX, a static tool for high-
lighting potential security vulnerabilities in Firefox addons.
VEX performs an unsound (by design) static taint analy-
sis of JavaScript code (tracking only explicit leaks) with the
intent of finding certain types of vulnerability bugs.

Beacon [29] is a static analysis tool to detect capability
leaks in Firefox Jetpack extensions (which is a library of
modules that makes writing addons much easier). While
Beacon detects capability leaks between modules and over-
privileged modules, their analysis is unsound by design, and
cannot perform information-flow reasoning.

Lerner et. al. [32] present a type-system based approach to
verify compliance of JavaScript-based addons with Private-
Browsing mode. This requires some annotation effort and
cannot perform information-flow reasoning.

8. CONCLUSION
Browser addons written using JavaScript are extremely

popular, but they can be easily exploited by malicious de-
velopers. We develop a static analysis to automatically infer

security signatures for browser addons. Security signatures
summarize uses of security critical APIs, as well as inter-
esting information flows augmented with how they occur in
addons. These signatures can be used to understand the
behavior of addons with regard to security much more eas-
ily than having to go through the entire addon source code
manually. Inference of security signatures can be employed
to automate addon vetting with very little manual interven-
tion. In our evaluation, we demonstrate the usefulness of
our strategy by applying our analysis to ten real browser
addons from the official Mozilla addon repository.
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