
 

THEME ARTICLE: Top Picks 

An Architecture for 
Analysis  

We propose an architecture controlled by a thin 

computational layer designed to tightly correspond 

with the lambda calculus, drawing on principles of 

functional programming to bring the assembly much 

closer to myriad reasoning frameworks and 

specification languages. This approach allows 

assembly-level verified versions of critical code to 

operate safely in tandem with arbitrary code without 

the need for large supporting trusted computing 

bases. 

Computer architecture has a role to play in every computing device, from the largest datacenter 
to the smallest embedded sensor. While many are thinking about huge machine-learning farms 
and ultra-low-power approximate computing, it is important not to forget that even our most life-
critical systems need architectures to get their computation done. The “hard” part of deploying 
such critical systems is not necessarily getting working code, or even achieving high perfor-
mance, but rather convincing oneself that the program one developed is actually correct and se-
cure. We explore a new approach to architecture, one where this act of analysis is elevated to a 
first-class design constraint, to see if and how the machines can be more easily and more com-
pletely analyzed. 

When the ability to reason about and verify low-level life-critical software is paramount, it leads 
one to reconsider the role of the instruction set architecture (ISA). The machine we introduce, 
Zarf, takes a leap towards ease of analysis by executing code in a manner closely resembling the 
underlying computational model on which proof and reasoning systems are already built and 
specifications are already written. Properties such as isolation, composition, and correctness can 
be reasoned about incrementally, rather than monolithically. However, instead of requiring a 
complete reprogramming of all software in a system, we examine a novel system architecture 
consisting of two cooperating layers:  

• one built around a traditional imperative ISA, which can execute arbitrary, untrusted 
code; and  

• one built around a novel, complete, purely functional ISA for reasoning about behavior 
at the binary level.  
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Application behaviors that are mission-critical can be hoisted piecemeal from the imperative to 
the functional world as needed. 

To demonstrate the usefulness of this platform, we have developed, modeled, and tested an im-
plantable cardio defibrillator (ICD)—an embedded medical device that is implanted in a pa-
tient’s chest cavity, monitors the heart, and administers shocks under certain conditions to 
prevent or counter cardiac arrest. Though ICDs provide life-saving treatment for patients with 
serious arrhythmia, they, along with other embedded medical devices, have seen thousands of 
recalls due to dangerous software bugs.1,2 We were able to formally verify the correctness of a 
low-level implementation of the core functions in the Coq Theorem Prover and directly extract 
executable assembly code without needing software runtimes. The ISA semantics allow us to 
construct an integrity type system and formally prove that the rest of the code never corrupts the 
critical functions. Furthermore, the functional abstraction built into the binary code allows us to 
bound worst-case execution time, even in the face of garbage collection. Taken altogether, we 
have an embedded medical application whose core components have been proven correct, where 
non-interference is guaranteed, real-time deadlines are assured to be met, and C code can execute 
arbitrary auxiliary functions in parallel for monitoring. The high-level system architecture of the 
platform is shown in Figure 1. 

 
Figure 1. High-level system architecture. By pairing an imperative core with a Zarf processor, we 
can run legacy software and drivers while raising critical portions of software to a region where they 
can be reasoned about compositionally. 

ISA 
An ISA built for analysis must look fundamentally different from the “instruction-by-instruc-
tion” model of traditional machines. Global machine state, mutable state, large numbers of in-
structions and features, arbitrary control flow, unenforced function call conventions, and implicit 
instruction semantics all thoroughly complicate the process of modeling and reasoning about ex-
isting ISAs. To avoid these traits, we design an interface that is small, explicit in all arguments, 
and completely free of state manipulation and side effects—with the exception of I/O, which is 
necessary for programs to be useful. Instead of imperative instructions acting as the building 
blocks of a program, our basic unit is the function. By bringing the definition of functions to the 
ISA level, they become not just callable “methods” that serve to separate out independent rou-
tines but are actually strict functions in the mathematical sense: They have no side effects, never 
mutate state, and simply map inputs to outputs. This change, along with a precise and formal se-
mantics of the ISA, allows us to efficiently reason about programs at a low level. 

Zarf’s functional ISA is effectively a version of lambda calculus—specifically, it is an untyped, 
lambda-lifted, administrative normal form (ANF) lambda calculus. It is untyped to avoid the 
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complexity of a hardware type checker; it is lambda-lifted so that each function can be assigned 
a global address in memory; and finally, it is in ANF because nested sub-expressions cannot eas-
ily be encoded into a binary. One bit is used at runtime to distinguish the two forms of values in 
the system: integers and objects. This prevents malformed code from putting the machine an in 
invalid state at runtime. Instructions use De Bruijn indices to refer to data elements—this is akin 
to using the stack offset of each variable in the local frame; variables are put on a conceptual 
stack automatically, allowing an implicit and static indexing to be determined. Because refer-
ences are localized and cannot refer to any global state, together with immutability, this enforces 
referential transparency. 

Only three instructions are used to define the bodies of functions: let, case, and result. Unlike 
RISC instructions, let and case can be multiple words long, depending on the number of argu-
ments and branches used (respectively); however, unlike most CISC instructions, each piece of 
the variable length instructions is word-aligned and trivial to decode. We describe the operation 
of each instruction below. 

Because Zarf has no programmer-visible registers or memory addresses, instructions need some 
way to refer to data elements in the program. This is accomplished by using pairs of source and 
index values, where source is from a predefined set—such as local or arg, which serve purposes 
similar to stack offsets in a traditional machine—and the index specifies which value from the 
set to use. The actual addresses themselves are never visible, but one can still uniquely refer to 
elements that reside on the stack or in the heap of the machine. 

Values in the system take the form of integers, closures, and constructors. Closures are unevalu-
ated function calls, as discussed below. Constructors are stub functions that just hold data; for-
mally, they can be used to make algebraic data structures. More informally, they are akin to 
structs in C. 

Figure 2 shows how function and constructor declarations, and the three high-level instructions, 
end up mapping to binary programs. The assembly process is quite direct, as the figure illus-
trates: Variable-length instructions are broken up by word, and then each word is encoded in bi-
nary. 

 
Figure 2. How high-level assembly instructions are compiled directly into a binary for the Zarf 
processor. 

Instructions: Let, Case, and Result 

Let 
The let instruction is used for both object allocation and function application. Because our ma-
chine is a platform where one defines and uses functions, let operations are the bread-and-butter 
of any program, allowing one to apply arguments to functions defined in software or hardware. 
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Each let instruction is assigned an implicit local identifier, which is a sequential number that be-
gins at 0 for each function. The first word in the let instruction indicates what function identifier 
(or closure object) is being used, and the number of arguments being applied. Then, that number 
of argument words follow, each one consisting of a source and an index, describing where the 
argument should be pulled from and what value to pull. 

Unlike a traditional “call” instruction, let does not immediately change the control flow to force 
evaluation of the function call. Instead, it creates a new structure in memory—a closure—that 
ties a function identifier to the arguments. This object represents the unevaluated result of the 
function call. When finally needed, it can be evaluated, providing a final result of the call. This 
sort of evaluation semantics is known as “lazy evaluation.” 

Additionally, let instructions can be used to dynamically create new functions “on the fly.” This 
can be accomplished through partial application—applying some, but not all, of a function’s ar-
guments. This creates a closure that still expects additional arguments, but already has some data 
values applied. For example, using the primitive “add” function, which expects two integers, one 
can execute “let f = add 1,” which will create a new local variable (called “f” in the high-level 
code) for the closure, tying the add function to the integer value 1. Then, this closure can be used 
as a function any number of times. It expects one argument and adds 1 to that argument. This 
sort of behavior is called “currying” and is supported directly in the hardware to allow for ex-
pressive binary programs. 

Case 
The case instruction provides a mechanism for control flow, accomplished through pattern-
matching. It takes a value (such as an argument or local identifier) and makes a set of equality 
comparisons, one for each “pattern” provided. When a matching pattern is found, that branch of 
the code is executed. Because these comparisons require an actual value, and not an unevaluated 
closure, this is the point in execution where evaluation takes place, reducing the structures cre-
ated with let instructions down to values. Evaluation will be performed until the function returns 
either an integer or constructor. Reducing to this point allows the machine to have a value with 
which comparisons can be made. 

The first word of the case, specifying the value to evaluate and match, is followed by a series of 
branches. Each branch contains a special branch head instruction that encodes something to 
match against. This can take the form of integer values, in the case that the function call reduced 
to an integer, or constructor identifiers, in the case that a constructor was found. The branch head 
also indicates how many words are in that particular branch, so on a failure, the machine knows 
how many instructions to skip to find the next branch head. 

A pattern_literal instruction is used to match against a literal value. The match succeeds if and 
only if evaluation resulted in an integer and the value of the integer is equal to the value in the 
branch head. On a match, execution continues with the next instruction; on a failed match, exe-
cution skips to the next branch head. A pattern_cons instruction is used for matching construc-
tors; here, the integer value encoded represents the function ID of the desired constructor to 
match against. The match succeeds if and only if evaluation resulted in a constructor object, not 
an integer, and the constructor ID exactly matches the instruction’s. Finally, a pattern_else in-
struction is required in every case statement in the event that no matching value or constructor is 
found. Else branches are always taken and demarcate the end of the case instruction. Case/pat-
tern sequences not adhering to the encoding described are malformed and invalid (for example, 
you cannot skip to the middle of a branch or have a case without an else branch). These proper-
ties can easily be checked in a single pass over the binary. 

For example, if we are writing a function that operates on linked lists, we have two possible con-
structors: the list constructor and the empty list constructor. Writing a function that recursively 
follows the linked list to the end, we case on the current value and match against the two con-
structor varieties. If a list constructor was found, we recursively continue; if the end of the list is 
found, we have our base case. 
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Result 
The result instruction is quite simple, taking up only a single word. It supplies a source and an 
index, indicating what data value should be returned from the current function. Every branch of 
every function must terminate with a result instruction. This significantly simplifies control-flow 
by disallowing re-convergent code; our simple pattern-skip mechanism is all that is required for 
control-flow, and checking that control-flow is well-formed is trivial and can be ensured with a 
single pass over a binary program. After a result instruction, either control flow passes to the 
case instruction where the function result was required (if an integer or constructor is being re-
turned) or evaluation continues (if a closure object is being returned). 

ICD SOFTWARE 
ICDs are small, battery-powered embedded systems, which are implanted in a patient’s chest 
cavity and connect directly with the heart. For patients with arrhythmia and who are at risk of 
heart failure, an ICD is a potentially life-saving device. Currently, the primary use of ICDs is to 
detect dangerous arrhythmias, such as ventricular tachycardia (VT), and administer pacing 
shocks, or anti-tachycardia pacing (ATP). These shocks help prevent the acceleration in heart 
rate leading to ventricular fibrillation, a form of cardiac arrest. 

Unfortunately, devices such as these can be subject to dangerous software bugs. From 1990 to 
2000, more than 200,000 ICDs and pacemakers were recalled due to software issues.1 Between 
2001 and 2015, more than 150,000 implanted medical devices were recalled by the US Food and 
Drug Administration (FDA) because of life-threatening software bugs.2 However, the usefulness 
of the devices is clear; ICDs are credited with saving thousands of lives. For patients who have 
survived life-threatening arrhythmias, ICDs decrease mortality rates by 20 to 30 percent over 
medication.3,4,5 Currently, around 10,000 new patients have an ICD implanted each month,6 and 
around 800,000 people are living with ICDs.7 This is a huge number of critical, life-saving de-
vices that might contain catastrophic bugs. 

To demonstrate the usefulness of the Zarf platform and to show that low-level analysis is, in fact, 
simplified, we implement a custom version of an ICD. The core of our ICD is an embedded, 
real-time electrocardiography (ECG) algorithm that perform QRS detection on raw electrocardi-
ogram data to determine the timing between heartbeats. (The QRS complex is made up of the 
rapid sequence of Q, R, and S waves corresponding to the depolarization of the left and right 
ventricles of the heart, forming the distinctive peak in an ECG.) We work off of an established 
real-time QRS detection algorithm,8 which has seen wide use and been the subject of studies ex-
amining its performance and efficacy.9 An open-source update of several versions of the algo-
rithm10 is available; we use the results of this open-source work as the basis of our algorithm’s 
specification. After the ECG algorithm detects the pacing between heartbeats, the ATP function 
checks for signs of VT and, if found, administers a series of pacing shocks. We implement a 
published VT test and ATP treatment procedure.11 

Our software is structured as a microkernel that schedules and coordinates three cooperating 
coroutines. These consist of the core ICD coroutine, an I/O coroutine that handles both reading 
raw values from the heart and outputting pacing signals when requested, and a diagnostic 
coroutine that collects information as the system runs. 

The I/O coroutine reads an input from the heart at a fixed frequency of 200 Hz. It passes this 
value to the microkernel, which then schedules the ICD coroutine, communicating the input 
value. The core ICD algorithm then takes place, consisting of a series of filter passes to detect 
the spacing between QRS complexes in the patient’s heartbeat. These filter passes and the high-
level software architecture are illustrated in Figure 3. Then, a screening algorithm examines a 
running window of the last 24 heartbeats; if 18 or more of them had periods of less than 360 ms, 
corresponding to a heart rate greater than 167 beats per minute, the ICD coroutine transitions to 
the treatment state. When in this state, it outputs a series of three sequences of eight pulses at 88 
percent of the current heart rate, with a 20-ms decrement between sequences. This is designed to 
prevent continued acceleration and restore a safe heart rhythm. 
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These output values are fed to the microkernel, which passes them to the I/O coroutine when 
next it is scheduled. When requested, the I/O coroutine signals that a shock should be adminis-
tered. 

The microkernel, I/O coroutine, and ICD coroutine all run on the Zarf platform; the diagnostic 
coroutine runs on the imperative core, a soft-core Xilinx MicroBlaze. The diagnostic routine is 
fed the output of the ICD and catalogs the number of times treatment has occurred. This infor-
mation is output when requested. 

 
Figure 3. ICD application software architecture and summary of ECG algorithm. We perform three 
forms of analysis on the system at the assembly level, verifying correctness, timing, and data 
integrity properties. 

BINARY ANALYSIS 
The goal of our system is to create a platform where reasoning and analysis at the binary level is 
simplified. Analysis can take many forms, applied to many parts of the system. To demonstrate 
the ability to reason on the Zarf platform, we perform three different forms of low-level analysis 
on our ICD software, proving the correctness of the core ICD functionality, ensuring real-time 
timing deadlines are always met with a timing analysis, and showing that critical values in the 
system are never corrupted with an integrity type system. 

Correctness 
The first step in trying to assure the correctness of a system is to find or write a specification. For 
this, we implement a high-level version of the ICD’s critical algorithms: the ECG filters and the 
ATP treatment procedure. These were written in Gallina, the specification language of the Coq 
Theorem Prover. The specification takes advantage of high-level language features, such as 
streams, allowing it to remain abstract and relatively simple. This allows us to be more confident 
that we have specified the algorithms correctly. (See Figure 4.) 

Next, we refine the specification into an implementation layer, also written in Gallina. This ver-
sion is more low-level than the specification; it operates on machine values rather than streams, 
isolates function applications to let expressions, and avoids use of the if-then-else construct (re-
placing it with equivalent logic and function calls). We formally prove, using Coq, that this ver-
sion is functionally equivalent to the high-level spec. 

From this layer, we take advantage of the narrow semantic gap from the formal specification lan-
guage to our machine semantics to directly extract an executable version of the low-level specifi-
cation. We do not need any expensive runtimes, complex translations and lowerings to 
imperative operations, or any compilation at all really; we simply replace the Coq syntax with 
the Zarf assembly syntax. The lowering from high-level spec to Zarf machine code is shown in 
Figure 4. This line-for-line extraction from specification to executable allows us to more or less 
directly run a version of the software that has been proven to be correct. 
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Figure 4. Extraction of verified application component from high-level formal specifications. 

Timing 
Even though the Zarf architecture is very high-level, abstracting away memory and providing a 
clean functional abstraction, we are still able to bound worst-case execution of programs on the 
platform. This is accomplished in the standard way, by looking at the timing of each instruction, 
bounding worst-case time for each function, and composing those values into a program bound. 

In addition, we have to bound the time for the garbage collector to run. We implement a semi-
space trace-collector, which uses bump-pointer allocation and a relatively simple copy-collect 
algorithm for collection. We bound the worst-case collection time as a function of the memory 
usage, because collection is proportional to the live set of objects at collection time. Without 
making approximations of when different objects go out of scope and become dead, we use the 
ultra-conservative approach of assuming that all objects are still live at collection time, causing 
the worst possible runtime for the garbage collector. Using that, we can get a direct bound by 
simply counting up the number and size of let instructions in each function. 

From the static analysis, we determine that the worst execution of the entire loop is 9,065 cycles 
to run one iteration of system, including garbage collection. This is 181.3 s on our FPGA syn-
thesized prototype running at 50 MHz, falling well within the real-time deadline of 5 ms. 

Non-Interference 
We have a nice, formal guarantee of the correctness of our ICD algorithms, but the remainder of 
the software in the system is potentially untrusted. To deal with this mismatch, we perform an 
analysis using an integrity type system to guarantee that critical values are never corrupted by 
any part of the software. 

To prove this about Zarf, we create a simple integrity type system that provides a set of typing 
rules to determine and verify the type of each expression, function, and constructor in a program. 
After providing trust-level annotations in a few places and constraining the normal Zarf seman-
tics slightly to make type-checking much easier, we can run a type-checker over the resulting 
Zarf code to know whether it maintains data integrity. 

We prove soundness of the type system, or that if a program type-checks, it is guaranteed to pre-
serve data integrity according to its security labels. For our program, the input and output of the 
ICD coroutine are considered critical, trusted values. Aside from the ICD coroutine itself, all 
other parts of the system are assumed to be untrusted. Once these type labels are applied, we per-
form type-checking to guarantee that those critical values are never corrupted by any part of the 
system. 
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EVALUATION 
The hardware description of Zarf is more complex than a simple embedded CPU, with 66 total 
states of control logic (four deal with program loading, 15 with function application, 18 with 
function evaluation, and 29 with garbage collection). 

In all, the combinational logic takes 29,980 primitive gates (roughly the size of a MIPS R3000), 
or 4,337 look-up tables (LUTs) when synthesized for an Artix-7 FPGA (less than 7 percent of 
the available logic resources). Estimated on 130 nm, the combinational logic takes up 0.274 
mm2, making Zarf quite a bit smaller than many common embedded microcontrollers. 

Though potentially larger in hardware usage and slower than a traditional microcontroller, the 
Zarf ICD application is still able to operate more than 25X faster than necessary to meet its criti-
cal real-time deadlines. Invaluably, we are able to add guarantees about the correctness of the 
most critical application components, as well as assurance of non-interference between separate 
functions in the system, all performed at the assembly and binary level. This adds a new and in-
teresting design point to the spectrum of embedded systems, where correctness and analysis are 
first-class citizens, but a universal system with practical performance is still possible. 

CONCLUSION 
As computing continues to automate and improve the control of life-critical systems, new tech-
niques that ease the development of formally trustworthy systems are sorely needed. The system 
approach demonstrated in this work shows that deep and composable reasoning directly on ma-
chine instructions is possible when the architecture is amenable to such reasoning. Our prototype 
implementation of this concept uses Zarf to control the operation of critical components in a way 
that allows assembly-level verified versions of critical code to operate safely in close partnership 
with more traditional and less-verified system components without the need to include runtimes 
and compilers in the trusted code base. We take a holistic approach to the evaluation of this idea, 
not only demonstrating its practicality through an FPGA-implemented prototype but also show-
ing the successful application of three forms of static analysis at the assembly level. 

As we move to increasingly diverse SoCs, heterogeneity in semantic complexity is an interesting 
new dimension to consider. A very small core supporting highly critical workloads might help 
ameliorate critical bugs, vulnerabilities, and/or excessive high-assurance costs. A core executing 
the Zarf ISA would take up roughly 0.002 percent of a modern SoC. Our hope is that this work 
will begin a broader discussion about the role of formal methods in computer architecture design 
and how it might be embraced as a part of the design process, rather than treated as an after-
thought. 
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