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Rust is a relatively new programming language that targets efficient and safe systems-level applications. It
includes a sophisticated type system that allows for provable memory- and thread-safety, and is explicitly
designed to take the place of unsafe languages such as C and C++ in the coding ecosystem. There is a large
existing C and C++ codebase (many of which have been affected by bugs and security vulnerabilities due to
unsafety) that would benefit from being rewritten in Rust to remove an entire class of potential bugs. However,
porting these applications to Rust manually is a daunting task.

In this paper we investigate the problem of automatically translating C programs into safer Rust programs—
that is, Rust programs that improve on the safety guarantees of the original C programs. We conduct an
in-depth study into the underlying causes of unsafety in translated programs and the relative impact of fixing
each cause. We also describe a novel technique for automatically removing a particular cause of unsafety and
evaluate its effectiveness and impact. This paper presents the first empirical study of unsafety in translated Rust
programs (as opposed to programs originally written in Rust) and also the first technique for automatically
removing causes of unsafety in translated Rust programs.
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1 INTRODUCTION

Rust is a relatively recent programming language designed for building safe and efficient low-level
software [Klabnik and Nichols 2018]. It provides strong static guarantees about memory and thread
safety while avoiding the need for garbage collection, and allows for low-level data manipulations
often required by system-level software. Rust has been used for building operating systems, web
browsers, and garbage collectors [Anderson et al. 2015; Levy et al. 2015; Lin et al. 2016] and it is
being adopted into complex software projects with large C/C++ code-bases such as Firefox [Bryant
2016], the Linux kernel [rus [n.d.]a,n], and Android [Stoep and Hines 2021].

An alarming amount of critical systems software (much of which predates the development of
Rust) is instead written in unsafe languages such as C and C++. Those languages’ lack of memory
and thread safety has led to numerous critical bugs and security flaws [noa 2021a,b; Durumeric
et al. 2014] with attendant costs in terms of both money and human lives [Durumeric et al. 2014].
In light of Rust’s recent development and promise of safety, a natural question arises about the
possible benefits of porting software from these unsafe languages to Rust, eliminating a large class
of potential errors. In fact, there has been some informal investigation into the question of how
effective Rust would be at fixing critical errors in existing C code (after all, not all bugs and security
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flaws are due to memory or thread unsafety). As an example, one indicative (though unscientific)
study done on cURL, a popular data transfer utility written in C, conservatively estimates that
using Rust would eliminate 53 of the 95 known cURL security flaws [Hutt 2021].

One obvious objection to porting existing software into Rust is the sheer effort required to rewrite
the code in a new language. An automated, rather than manual, translation would make that effort
much more practical. The primary barrier to such an automated translation is Rust’s sophisticated
type system which it uses to provide the desired memory and thread safety guarantees. To produce
verifiably safe Rust code from unsafe C code, for example, requires the translator to analyze the
relevant properties of the C code and create a suitable well-typed Rust program that correctly
expresses those properties.

There have been several industry-backed attempts to automatically translate C programs to
Rust [Citrus Developers [n.d.]; Immunant inc. 2020b; Sharp 2020]. These translations are purely
syntactic in nature, producing memory- and thread-unsafe Rust code that closely mimics the original
C code and explicitly bypasses the safety checks of the Rust compiler (by marking all translated
code with Rust’s built-in unsafe annotation). While these tools provide a good starting point for
automated translation, they leave the hard work of manually reasoning about the safety properties
of the translated program and rewriting the code to enable the Rust compiler to verify those
properties to the developer. To our knowledge there has been no academic or industry investigation
into the question of whether and how unsafe languages can be automatically translated into safe
Rust programs. This paper makes two major contributions towards the goal of automatically
translating sequential C programs (for this stage of the work) to safer Rust programs, i.e., the goal
for now is not complete safety but simply more safety than the existing naive syntactic translations.

Our first contribution is a quantitative study on the sources and causes of unsafety present in
Rust programs that have been syntactically translated from C programs. While there have been
studies on unsafe code in native, hand-written Rust programs [Astrauskas et al. 2020; Qin et al.
2020], this is the first study that examines automatically translated Rust programs. We focus on Rust
code translated from C using the existing c2rust translator [Immunant inc. 2020b]. Our findings
indicate that unsafety in automatically translated Rust code differs in various significant ways from
unsafety in natively written Rust code. For example, a prevalent source of unsafety in automatically
translated code, unlike native code, is due to the use of raw pointers: the translation to Rust converts
all C pointers into raw pointers, and any dereference of a raw pointer must be marked as unsafe.
We break down all of the sources of unsafety present in our translated benchmarks, quantify how
often they occur, explain what causes these sources of unsafety in the original C programs, and
quantify the impact of addressing each source of unsafety on the overall safety of the translated
Rust programs.

Our second contribution, informed by our study, is a technique for automatically generating safer
Rust code by addressing one common cause of unsafety. We focus specifically on the use of raw
pointers in the translated programs. Idiomatic Rust code instead uses safe references with explicitly
annotated lifetime information that allows the Rust compiler to safely deallocate the associated
memory when it is no longer needed. Rust uses an ownership-based model for statically reasoning
about references, shared references, mutability, lifetimes, and overall memory- and thread-safety
[Boyapati et al. 2002, 2003]. Using this model, valid Rust programs are automatically proven safe
via Rust’s borrow checker. Invalid Rust programs, i.e., those unable to be statically proven as safe,
are rejected by the borrow checker (which ignores code explicitly marked as unsafe). We make
the key insight that we can piggyback on Rust’s borrow checker in order to extract the lifetime,
sharing, and mutability information we need to turn a subset of raw pointers into safe references.
We introduce and implement a translation technique based on this insight which takes naively
translated, completely unsafe Rust programs and generates safer Rust programs (specifically, in
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Table 1. Benchmark programs, ordered by Rust lines of code. The benchmarks that come from the c2rust
manual are marked with bold. LoC = lines of code, not counting comments or blank lines. The tulipindicators
and robotfindskitten benchmarks are abbreviated as Tl and RFK, respectively.

Benchmark  Application Domain ~ CLoC RustLoC # Functions # unsafe Functions

libcsv Text I/O 1,035 951 23 23
urlparser  Parsing 440 1,114 22 21
RFK Video games 838 1,415 18 17
genann Neural nets 642 2,119 32 27
lil Interpreters 3,555 5,367 160 159
json-c Parsing 6,933 8,430 178 178
libzahl Big integers 5,743 10,896 230 230
bzip2 Compression 5,831 14,011 128 120
TI Time series analysis 4,643 19,910 234 229
tinycc Compilers 46,878 62,569 662 625
optipng Image processing 87,768 93,194 576 572
libxml2 Parsing 201,695 430,243 3,029 3,009
Total — 366,001 650,219 5,292 5,210

this case, one with fewer raw pointers). We evaluate our implementation on a set of C benchmarks
and report on its effectiveness.
The specific contributions of this paper are as follows:

e A study of the sources of unsafety in Rust code that has been produced by c2rust (Section 2);

e A technique to rewrite a particular source of unsafety in translated programs (a specific kind
of raw pointer) that hooks into the Rust compiler to extract type- and borrow-checker results
and uses them to generate verifiably safe code (Section 3);

e An implementation of this technique' with a corresponding evaluation of its effectiveness
(Section 5).

We end with a discussion of related work (Section 6) and conclusion (Section 7).

2 UNSAFETY IN TRANSLATED RUST PROGRAMS

We investigate the various sources of unsafety in Rust programs that have been translated from C
using c2rust. While there are existing studies of unsafe code in the native Rust ecosystem [As-
trauskas et al. 2020; Qin et al. 2020] our investigation is specifically about automatically translated
Rust programs, which may have a different distribution of unsafe code than Rust programs written
by developers.

2.1 Benchmarks

Previous studies of unsafe Rust code have taken advantage of large repositories of native Rust
programs such as crates. io. There does not exist a large repository of Rust code that has been
translated from C, and so we must collect our own benchmark suite. While there are many existing
C programs to choose from, each translation requires a fair amount of manual labor to correctly
insert c2rust in that C program’s particular build process, and also c2rust itself does not work on
all C programs and build environments.

We have collected 12 open source C benchmarks of various sizes and application domains, as
shown in Table 1. Six of the benchmarks came from the c2rust manual [Immunant inc. 2020a]
(marked with bold in the table); the remaining six came from GitHub. We picked benchmarks from

1We will submit our implementation for artifact evaluation.
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a variety of application domains, as described in the table. Table 1 shows that, on average, the
translated Rust programs are 1.8X larger than their C counterparts. Decreases in translated LoC
arise because c2rust removes obviously dead or unreachable code. Increases in translated LoC
come from macro expansion, adding function declarations for functions included from the headers,
translation of increment and decrement operatorsz, and annotations such as #[no_mangle] and
#[repr(C)] to make the Rust code compatible with the C ecosystem.

Table 1 also shows that the vast majority of functions in the translated code are marked unsafe.
Specifically, all translated functions directly from the original C program are marked unsafe, and
only auxiliary functions generated and introduced during the translation itself are marked safe.
Although all functions directly coming from C are conservatively marked unsafe by the translation,
we observe that some do not actually require the unsafe tag. In Section 2.2 we quantify how many
functions are unnecessarily marked unsafe by the translation. Furthermore, we characterize
different sources of unsafe and quantify how prevalent they are in the program.

Threats to Validity. Our benchmark suite is limited in the number of benchmark programs
because of the manual effort required to: (1) convert each C program to a corresponding Rust
program with necessary adjustments to their respective build processes; and (2) reorganize the
code (such as unit tests) in a way that Cargo, the de-facto standard build system for Rust, can build
the resulting Rust project reliably. The size of the benchmark suite means that the percentages we
report may not reflect the percentages of a larger pool of C programs. We have selected benchmarks
from a variety of domains in order to reflect different types of C programs and to increase the
validity of our benchmark suite and our results.

Threats to Validity.. Our benchmark suite is limited in the number of benchmark programs
bacause of the manual effort required to convert each C program to a corresponding Rust program
with necessary adjustments to the build system, and reorganizing the code (such as unit tests) in a
way that Cargo, the de-facto standard build system for Rust, can build the resulting Rust project
reliably. We used C programs already used by c2rust developers to demonstrate their tool. As for
our other benchmarks, we picked benchmarks from a variety of domains in order to reflect different
types of C programs, and to increase the validity of our benchmark suite and our results.

2.2 Provenance of Unsafety
The Rust Reference [The Rust developers [n.d.]b] defines the following sources of unsafety:

(1) Dereferencing a raw pointer

(2) Reading from or writing to a mutable global (i.e., static) or external variable

(3) Reading from a field of a C-style untagged union

(4) Calling a function marked unsafe (including external functions and compiler intrinsics)
(5) Implementing a trait that is marked unsafe

These categories are too coarse-grained for our purposes. In particular, for our benchmarks
Category 4 includes almost all calls to the other functions in the program because almost all
functions in the program are initially marked unsafe. Category 4 also includes the use of inline
assembly and unsafe casting, which we would like to separate from other sources of unsafety for
our study.

We have refined the official categories above into distinct features, where each feature reflects a
particular unsafe feature in Rust. These features give us a clearer picture of programs translated
from C. Since our benchmarks do not implement any unsafe traits (they only implement traits
that can be derived by the compiler, which are all safe), we do not consider Category 5 further.

ZRust does not have increment-and-return operators like ++x and assignments do not return the left-hand side, so these
operators are translated into multiple statements in Rust.
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Our benchmarks call external functions extensively (e.g., nalloc), making external function calls
(Category 4) a major source of unsafe function calls. We count calls to malloc and free separately
from other external function calls, as we conjecture that most of the allocation-related external
calls can be converted to safe memory allocation mechanisms in Rust such as Box: : new. In our
benchmarks, the only unsafe Rust standard library function called is std: :mem: : transmute, used
for reinterpreting/casting a value. We exclude calls to std: :mem: : transmute when it is used for
casting byte arrays to C-style character arrays (which is safe under the assumption made by c2rust
that a character is 8 bits). The resulting features that we measure for our benchmarks are as follows,
where the text in bold indicates the column names in our tables:

e RawDeref: dereferencing a raw pointer;

o Global: reading from, writing to, or making a reference to a mutable global (static) or
external variable;

e Union: reading from a field of a C-style untagged union;
e Allocation: direct external function calls to malloc and free;

e Extern: calling an external function other than a function defined in another module in the
same program,3 malloc, or free; or making an indirect call via a function pointer;4

e Cast: unsafe casting using std: :mem: : transmute;

e InlineAsm: using inline assembly.

We collect our data on a function-level because (1) c2rust marks functions unsafe rather than
inserting unsafe blocks,? and (2) existing work on quantifying unsafe behavior of Rust programs
in general [Astrauskas et al. 2020] aggregates the relevant information on a function level because
different developers may prefer to use different granularities for unsafe blocks.

An important omission in our categories of unsafety is that of direct calls to unsafe functions
(i-e., the original Category 4 above). As previously mentioned, this category is not useful for our
translated benchmarks because almost all function calls are to unsafe functions, and what we
are interested in is why the functions are unsafe. For this reason, we count sources of unsafety
differently from any existing work: a function is unsafe in relation to some category above not only
if it directly contains unsafe code relevant to that category, but also if it directly or transitively
calls a function that is unsafe due to that category. In other words, we count a function as unsafe
for a category if executing that function can exhibit unsafe behavior relevant to that category. To
calculate this, we build a call graph and propagate unsafe behavior from callees to their transitive
set of callers.

For each unsafe feature, we collect the following information for our study:

(1) How many unsafe functions in the program use the unsafe feature, directly or transitively
(i.e., how many functions need the unsafe feature)

(2) How many unsafe functions in the program use only this unsafe feature

(3) How many times a use of the unsafe feature appears in the program text

3c2rust uses extern declarations to import functions from other modules in the same program. These functions can be
imported directly as non-external functions after the changes described in Section 4.1.1, so we do not count these functions
as external functions in our study.

4 An indirect call could be calling an external function, and just like an extern call the compiler can only see the function
signature of the callee but not the body.

SExcept when generating shims for the main function, which cannot be marked unsafe. These shims extract the program
arguments then immediately call the main function from the C program.
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Table 2. How many times different categories of unsafety appear in each benchmark. The meaning of each
column is explained in Section 2.2.

Benchmark Union Global InlineAsm Extern RawDeref Cast Alloc

libesv 0 2 0 35 174 4 0
urlparser 0 1 0 122 60 43 55
RFK 0 127 0 86 24 0 2
genann 0 164 0 183 339 3 5
lil 0 10 0 149 1,668 11 62
json-c 101 93 0 208 1,843 17 30
libzahl 0 430 29 63 2,457 0 43
bzip2 0 700 0 422 3,764 1 14
TI 0 108 0 352 1,847 84 9
tinycc 613 2,552 0 464 5,632 31 2
optipng 82 1,361 0 812 6,062 37 43
libxml2 499 3,571 0 4,593 52,546 15 15
Total 1,295 9,119 29 7,489 76,416 246 280

(4) The total size (in lines of code) of unsafe functions that directly or transitively use the unsafe
feature

To get the feature counts for item 3 in the above list, we first convert the translated Rust programs
to Rust High-level IR (HIR)®, an AST-based representation. From there, we count individual features
in the HIR in the following ways:

e For pointer dereferences, we count the number of raw pointer dereference nodes
e For inline assembly, we count the number of inline assembly nodes

e For interaction with mutable or external globals, we count how many times these variables
are used (read from, written to, or taken a reference of) in the source code.

e For reading from a union, we count each field access involving a union, unless it is immediately
on the left-hand side of an assignment

e For memory allocation, external functions, and unsafe casting, we count the number of static
call sites to the relevant functions

Table 2 lists how many times each source of unsafety statically appears in each benchmark. We
observe that there are two sources which do not appear across many benchmarks, namely C-style
unions (which appear only in larger programs) and inline assembly (which is only used in one
program). Table 2 shows that the most common source of unsafety is raw pointer dereferencing,
which is eight times more common than the next most common source (globals), followed closely
by external function calls.

Table 3 takes a function-level approach, counting the number of functions directly or transitively
affected by each category of unsafety. This information is split into functions that are uniquely
affected by a single category of unsafety (under the 3! columns) and those that are affected by
multiple categories of unsafety including this one (under the 3, columns). The 35, columns will
count a function multiple times, once for each category it is affected by. Functions which were
marked unsafe by the translation but nonetheless are devoid of unsafe behavior are totalled in the
false positives (FP) column; we observe that 6% of functions fall into this category. Both Table 2

SHIR is used internally in the Rust compiler, and is close to initial AST obtained after expanding macros, type checking, and

normalizing loops and conditionals. We chose to use HIR because it provides type information needed by our analyses and
it is close to the source code.
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Table 3. Number of functions affected by each category of unsafety (a function may be counted multiple
times if affected by multiple categories). FP denotes false positives: functions that do not contain any unsafe
behavior but are marked unsafe by c2rust. The column labels are explained in Section 2.2.

Benchmk. Union ‘ Global ‘ InlineAsm ‘ Extern ‘ RawDeref ‘ Cast ‘ Alloc ‘ FP
R N I L N = T O i = O = = S =R O = =
libesv 0 0] 1 1| o0 0] o 9] 13 2] 0 4] o o] o
urlparser 0 0| 0 4| o0 0| o 20| 0 17| 0 0 19 o0
RFK 0 0|0 15 0 0] 1 15| 0 710 0ol o0 2] 1
genann 0o o o0 4| o0 0] 1 24| 0 21| 0 13] 1 18| 2
lil 0 0| 2 73| 0 0 1 134| 14 148 0 52| 1 100 | 2
json-c 0 62|10 49| 0 0| 4 14| 24 14| 0 49| 1 51 11
bzip2 0 3 79| 0 0| 7 85| 23 82| 0 3] 2 26| 0
libzahl 0 0| 0 115) 0 111| 0 114| 90 230 | 0 o] 0 10| o
TI 0 0|0 13 0 0| 1 104| 74 175| 0 73| 1 16 | 49
optipng 0 57| 4 27| 0 0|14 371|126 487 | 0 57| 7 141 29
tinycc 0 283| 5 486 | 0 0| 8 488 | 57 577 | 0 183 | 1 340 | 30
libxml2 0 198 |28 2220 | 0 039 2359|369 2740 | 0 1,156 | 0 1,268 | 183
Total 0 600 |53 3376 | 0 111 |76 387|790 465 | 0 1591 | 14 2091 | 307

and 3 show RawDeref, Global, and Extern to be the biggest sources of unsafe behavior, typically in
that order. However, while RawDeref is heavily overrepresented in terms of sheer usage (Table 2),
at the function level it compares much more closely to Global and Extern (Table 3). From the
standpoint of trying to make more functions safe, this is an important observation to make, as it
shows that RawDeref is not much more important than Global or Extern.

2.3 Underlying Causes of Unsafety

We now investigate the behaviors in the original C programs that lead to each category of unsafety.
Some categories of causes are obvious and uninteresting: mutable globals (Global) and dynamic
memory allocation (Allocation) are needed in C programs for creating long-lived objects that are
accessible from different parts of the program; inline assembly (InlineAsm) is used in only one
of our benchmarks (1ibzahl) for architecture-specific optimizations. We examine the remaining
categories in more detail below.

2.3.1 Raw Pointers. We inspected the translated benchmarks and how they use raw pointers in
detail. We recognize five distinct reasons that a benchmark might have for using a raw pointer:

e The raw pointer appears as part of the public signature of an API implemented by the
benchmark. This is a common occurrence in our benchmarks because most of them (except
1il and RFK) are either libraries or contain libraries.

e The raw pointer is obtained via custom memory allocation (i.e., calling malloc). These raw
pointers could be converted to safe references if we replace malloc with Rust’s safe memory
allocation and compute suitable lifetime information for them.

o The raw pointer is obtained via a cast to or from void#. In all cases this reason turns out to
be the result of an idiomatic C method for overcoming C’s lack of generics and implementing
polymorphism. These raw pointers could be converted to safe references by introducing
generics or traits to implement polymorphism.

e The raw pointer is passed as an argument to, or returned from, an external function call.
These raw pointers can only be converted into safe references by replacing the external call.
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e The raw pointer is used in pointer arithmetic. Because arrays in C decay to pointers, this
reason captures most array accesses (unless the array has a fixed size known at compile time).
Rust does not allow pointer arithmetic on safe references, but these raw pointers could be
converted to safe references if we can convert the pointer arithmetic into safe array slices.

In our data collection we group the first two categories above into a single category named
Lifetime because converting these raw pointers into safe references requires computing the same
information for both categories and does not involve much invasive code transformation beyond
changing the pointer declarations and inserting lifetime information. Note that deriving the lifetime
information is needed for making pointers safe in all categories, so Lifetime specifically denotes
pointers that do not fall into any other category. The remaining categories are named VoidPtr,
ExternPtr, and PtrArith respectively. For each category of raw pointer we collect the following
information, using the same methodology as for Section 2.2:

(1) Number of declared pointers involved in that category (Table 4);
(2) Number of dereferences of pointers in that category that appear in the code (Table 5);
(3) Number of unsafe functions that use pointers from that category (Table 6).

A pointer may be contained in multiple categories (e.g., a pointer returned by malloc that
undergoes pointer arithmetic and is then passed to an external function). As in Table 3, we split our
counts into pointers that uniquely belong to a particular category (3!) and those that belong to that
category but also others (35,). Because the Lifetime category contains only pointers not involved
in other categories we only give the 3! column for it. For counting the number of unsafe functions
in Table 6 we only consider those functions for which raw pointers are the only reason for their
unsafety; that is, we do not consider functions that use global variables, unsafe cast, inline assembly,
or read from a C-style union. “Using” a pointer means any one of declaring (as a parameter or in
the function body) or dereferencing the pointer. As a reminder, we consider a function to use a
pointer either if the function does so directly, or calls (directly or transitively) a function that uses
the pointer.

To determine how the pointers are being used we implemented and executed a flow-insensitive,
field-based taint analysis based on Steensgaard-style pointer analysis [Steensgaard 1996] and Rust’s
type system [The Rust developers [n.d.]b]. We chose a flow-insensitive, equality-based analysis
because all values that flow into a variable and from the variable are necessarily of the same type,
and if any one of those values is used for a reason on our list then that reason forces that variable
and all of the places its value flows to be a raw pointer. We consider a pointer to belong to a
particular category (Lifetime, VoidPtr, ExternPtr, or PtrArith) if the pointer may contain a
value that is potentially obtained from a source relevant to that category (e.g., the result of a pointer
arithmetic operation, the return value of an external call, a value of type * const void or x mut
void) or if its value may flow into a sink relevant to that category (e.g., pointer arithmetic, or an
argument to an external call, or a value that is cast to a void pointer).

Tables 4 to 6 contain the results of our analysis. Tables 4 and 5 show that 76.9% of raw pointer
declarations, and 80.8% of raw pointer dereferences use pointers that are (sometimes indirectly)
involved in multiple causes. The highest unique cause of raw pointer declarations and dereferences
is the Lifetime category (9.5% and 10.0% respectively). However, the most prominent cause may
depend on the program. For example, the highest contributing categories (in all 3 metrics) are
VoidPtr in bzip2 which uses void * for polymorphism in order to share code between encoding
and decoding stages, and PtrArith in TI which is a time series analysis library using and passing
around dynamically allocated arrays. Finally, 71.4% of the functions use raw pointers for more than
one reason, and 15.9% of these functions use pointers stemming from only Lifetime.
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Table 4. Raw pointer declarations, grouped by category. 3! and 35, are explained in Section 2.2. Lifetime
category contains only unique (3!) causes by definition.

Benchmark VoidPtr ‘ PtrArith ‘ ExternPtr ‘ Lifetime ‘ Total
I 3, 3 3| 3 3, | 3 |
libesv 7 10 0 7 2 3 18 37
urlparser 0 70 0 70 4 70 5 79
RFK 0 0 1 0 0 0 1 2
genann 0 61 0 62 6 62 5 73
1il 1 314 60 316 10 317 50 438
json-c 13 227 1 227 9 211 41 297
bZipZ 43 112 24 93 9 112 37 227
libzahl 9 324 114 322 3 319 7 457
TI 15 41 724 41 4 41 82 866
tinycc 18 1,100 16 1,094 23 1,084 192 1,352
optipng 12 1,016 121 987 48 1,013 210 1,407
libxml2 445 8,389 170 7,787 | 141 8,393 800 9,950
Total 563 11,664 | 1,231 11,006 | 259 11,625 | 1,448 | 15185

Table 5. Raw pointer dereferences, grouped by category. 3! and 3, are explained in Section 2.2. Lifetime
category contains only unique (3!) causes by definition.

Benchmark VoidPtr ‘ PtrArith ‘ ExternPtr ‘ Lifetime ‘ Total
I 3, | A Ty, | A 3, | a |
libesv 0 26 0 26 0 17 148 174
urlparser 0 2 0 2 0 2 58 60
RFK 0 0 24 0 0 0 0 24
genann 0 312 22 313 4 313 0 339
lil 0 895 | 127 897 8 897 636 | 1668
json-c 9 1639 39 1646 | 56 1433 93 | 1843
bzip2 1704 1192 | 173 627 | 11 1195 679 | 3764
libzahl 1 1220 | 1183 1220 | 22 1191 31| 2457
TI 426 184 | 1237 184 0 184 0| 1847
tinyce 28 4525 | 122 4522 9 4491 946 | 5632
optipng 5 5212 | 203 5043 | 36 5208 606 | 6062
libxml2 986 46536 | 303 42237 | 235 46543 4472 | 52546
Total 3159 61743 | 3433 56717 | 381 61474 | 7669 | 76416

2.3.2 External Function Calls. We break this investigation down into two questions: (1) How
prevalent are calls to specific external functions? (2) Which external functions have the highest
impact on safety? To answer these questions, we focus on the external functions and the internal
functions that are, directly or transitively, made unsafe due to calls to those external functions.
These internal functions may be unsafe for other reasons as well, but for this investigation we
ignore other causes of unsafety.

How prevalent are the external functions across benchmarks? It would be useful to know
if there are a small set of external functions that appear across many benchmarks, making them
an attractive target for replacement. There were 228 external functions used in total across all of
our benchmarks. Figure 1a breaks down these external functions based on how many benchmarks
use each one. We observe that 64% (147/228) of the external functions are unique to a particular
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Table 6. Functions using raw pointers in a given category. 3! and 35, are explained in Section 2.2. Lifetime
category contains only unique (3!) causes by definition.

Benchmark ‘ VoidPtr PtrArith ‘ ExternPtr ‘ Lifetime ‘ Total
|3 3, | 3 3, |3 3, | 3 |
libcsv 1 5 0 3 0 4 12 18
urlparser 0 5 0 5/ 0 5 2 7
robotfindskitten 0 0 0 0 0 0 2 2
genann 0 6 0 6 0 6 3 9
lil 1 62 9 61 0 62 6 78
json-c 6 50 0 50 1 47 20 77
bzip2 7 28 2 19 0 28 4 41
libzahl 0 79 9 79 0 79 2 90
tulipindicators 2 3| 9% 31 0 3 45 146
tinycc 3 76 5 75 0 65 35 119
optipng 4 175 | 12 171 | 5 177 62 | 260
libxml2 7 536 6 510 7 540 36 596
Total 31 1025 | 139 982 | 13 1016 229 1443
147
150 1400 1290

1200
120

2
S
2 8 1000
3 2
g % 5 800
g g
5 60 5 600 422397 393 406
2 ] 355 321
° = 400
[} Is}
g 90 12710 =
E 28 43 1 9 0 o0 200
b4 18
0 = 0
12 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9
Number of benchmarks that use the external function Number of benchmarks an external function is used
(a) Number of external functions based on how (b) Number of calls to external functions based
many benchmarks use them on how many benchmarks use them

Fig. 1. Counts of external function calls.

benchmark, and that no external function is used by more than 9 (out of 12) of our benchmarks.
The external functions that occur in more than half of our benchmarks are:

e Used in 9 benchmarks: strcmp
e Used in 8 benchmarks: strlen, printf, fprintf
e Used in 7 benchmarks: memcpy, fopen, fclose, exit

Most of these functions deal with string manipulation or I/O. Figure 1b divides the external
calls into bins based on how many benchmarks use them, then counts for each bin how many
static call sites to a function in that bin appear across the benchmarks. For example, the column
labeled "2’ shows that there were 245 static call sites to an external function that appears in exactly
two benchmarks. The total calls to functions used in exactly 8 benchmarks is much higher due
to fprintf, which is called from 858 places across the benchmarks. We can see that the external
functions listed above as common across 7 or more benchmarks account for almost half (46.0%) of
all external function calls.
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What are the external functions with the highest impact on unsafety? Another useful statis-
tic for prioritizing external functions is their relative impact on unsafety. In order to measure this
factor, we investigate:

e The number of static call sites for each external function

e In how many functions an external function is called (directly or transitively)

Figure 2a shows an optimal ordering of external functions that maximizes cumulative static
call sites. Overall, only seven external functions need to be replaced by safe alternatives to elim-
inate more than half (52%) of the external function calls. The most common functions in this
ordering are similar to the most common functions reported above. The ten most commonly
called functions we encounter in order are: fprintf, strcmp, memset, printf, memcpy, strlen,
snprintf, __assert_rtn, __ctype_toupper_loc. Here, __assert_rtn is the C library function
used in implementing the assert macro which can be replaced by Rust’s safe assert! macro, and
__ctype_toupper_loc is an implementation detail of the toupper function in C which has a safe
counterpart in the Rust standard library.

The other statistic we focus on is the external functions that make the highest number of functions
unsafe (that is, the external functions that are called from the most functions, directly or transi-
tively). Figure 2b shows how many transitive callers each external function has, both as absolute
value and percentage. The ten extern functions that have most transitive callers in our bench-
marks in order are: memset, memcpy, __xmlRaiseError, strlen, snprintf, pthread_mutex_lock,
pthread_mutex_unlock, pthread_mutex_init. Each of these functions contribute to the unsafety
of 32.5-54.6% of the extern-calling functions. Here, __xmlRaiseError and the pthreads-related
functions are used only by our largest benchmark, 1ibxml2. __xmlRaiseError is an external
function because of how libxml2 is linked: some features such as error reporting are linked from
support modules that are compiled separately from the main program. This fact shows that an
effort to make the whole benchmark project link in an idiomatic way for a Rust program can reduce
pervasive external calls.

Some of the most-called external functions above are specific to a single benchmark. To assess
the impact of external functions that are not specific to one benchmark, we applied the same
analysis restricted to external functions used in more than one benchmark. Figure 2c shows how
many transitive callers each external function used in more than one benchmark has. The 10 most
called external functions with this restriction in order are: memset, memcpy, strlen, snprintf,
fprintf, memmove, __errno_location, memcmp, strchr, strcmp. These functions contribute to the
unsafety of 19.9-54.6% of the functions. Each function in this list is called in at least 4 benchmarks,
except __errno_location, which is called in 3 benchmarks and it comes from accessing the errno
variable in the C standard library. This list is similar to the previous list for the prevalence question
in that it consists mainly of string manipulation, copying/initializing arrays in memory, and I/O.

J—

2.3.3 C-Style Unions. We manually inspected all C-style unions declared in our benchmarks.
Most of these were defined by the C developers with accompanying tag data in order to manually
implement a tagged union. In some benchmarks, the tag information was not stored with the union
data but rather inferred from invariants that hold at a given program point. 1ibxml2 contains
declarations for pthreads-related unions used in external calls; however, these unions are used
only by pthreads functions and never read directly by the Rust program so they don’t contribute
to unsafety. Apart from these, none of the unions in our benchmarks are passed to or obtained
from external functions, and we conjecture that they can be replaced with safe tagged unions (Rust
enums) to reduce the use of C-style unions in the program. However, this transformation would
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Fig. 2. Impact of external function calls on unsafety.

yield highly un-idiomatic Rust code which would check the type of the union twice in the cases
where there is an explicit tag that the C program checks.

2.3.4 Unsafe Casting. We inspected the calls to mem: : transmute generated by c2rust. There
are two uses of unsafe casting in the generated benchmarks: (1) converting 8-bit byte arrays to C
character arrays (different from Rust strings) which corresponds to 71.7% (296 out of 413) instances
of unsafe casting, and (2) converting between function pointers’ and void * which corresponds to
the remaining 28.3% (117) unsafe casts. The first option is safe on architectures using 8-bit unsigned
characters (most modern architectures), and can be put behind a wrapper function.

2.4 Translated Rust versus Native Rust

Comparing ourselves to prior studies on the sources of unsafety in native Rust programs [Astrauskas
et al. 2020; Qin et al. 2020], we asked ourselves: What are the similarities and differences in the
distributions of causes of unsafety between native Rust programs and Rust programs automatically
translated from C?

The closest work to ours in the domain of quantifying unsafety in Rust programs is Astrauskas
et al. [2020]’s work on classifying how programmers use unsafe Rust. They classify Rust program-
mers’ reasons for using unsafe and quantify the prevalence of each reason in the open source Rust
ecosystem. However, our methodology differs significantly, so that comparing their results and
our own is not straightforward. We consider root causes of unsafety in a function (directly and
transitively) whereas Astrauskas et al. [2020] considers only the function body itself; they also use
only coarse-grained unsafety categories. For example, their study lists “unsafe function calls” as
the only provided reason for unsafety for 83.5% of the functions in their benchmarks, which as we
have described above includes calls to unsafe internal functions, unsafe external functions, and
unsafe compiler intrinsics, as well as unsafe casting and inline assembly. The differences in our
methodologies partially stem from the differences between our goals and theirs:

o Astrauskas et al. [2020] attempts classify how Rust programmers use unsafe, so causes of
unsafety in the function body is important to their study. Also, their classification of unsafe
functions reflects their relation to the Rust ecosystem, e.g., unsafe functions from the standard
library, the current program, and crates (packages in Rust ecosystem) providing Rust bindings
to existing C/C++ code.

"Function pointers are represented in Rust as optional references rather than raw pointers, so casting them directly to and
from raw pointers is unsafe.
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e We are interested in classifying and quantifying the prevalence and impact of unsafe behavior
in programs translated from C. In our case, the unsafe features are included because the
translation mimics the original C program as faithfully as possible, not because Rust pro-
grammers consciously used the unsafe behavior. Also, our classification of unsafe functions
reflects more fine-grained reasons for what causes the unsafety (e.g., memory allocation or
unsafe casts).

Excluding their category “use of unsafe functions” (and the corresponding categories in our own
classification), the list of reasons for unsafety given in their study, ordered by quantity, are in the
same order as our own study: raw pointer dereference, access to mutable/external globals, unions,
and inline assembly. However, the ratios of these sources of unsafety differ, possibly because of
the differences in methodology. Also, we do not observe certain rare reasons (occurring in 0.1% of
unsafe function bodies) of unsafety that they report in their Table 3 [Astrauskas et al. 2020], as
none of these would be generated by c2rust.

2.5 Observations and Discussion

From Table 3, we can see that most functions are affected by multiple categories of unsafety: for each
category, the number of functions uniquely affected by that category is 0-2% of the total number of
functions affected by that category, with RawDeref being an outlier at 15%. Unions, inline assembly,
and casts never appear by themselves at all. These numbers indicate that making translated Rust
programs safer is a multi-faceted problem, in that fixing a single category of unsafety will not make
a large impact on the number of unsafe functions. Only by fixing multiple categories can we hope
to make a significant difference.

Because an effective method for making translated Rust programs safe needs to handle multiple
categories of unsafety, an interesting question is how to prioritize which categories to handle.
To answer this question, we graph the cumulative impact of fixing categories highest-to-lowest
according to the following heuristic order of impact: raw pointer dereference, memory allocation,
extern calls, access to globals, unsafe casts, access to unions, inline assembly. To assess the potential
of solving these problems in this order we calculate the cumulative impact of how many unsafe
functions become safe as each of these categories of unsafety are eliminated. Figure 3 shows the
results of this calculation. We include both the results for all functions in all benchmarks, and the
result for the three largest benchmarks in order to demonstrate the variability of the results. In this
graph we include the functions unnecessarily marked unsafe. The results on the graph indicate that,
in order to make more than half of the functions safe, we need to handle the four most common
sources in our list. Also, the the graph (along with the tables) shows that impact of unsafe casts
and C-style unions vary considerably depending on the benchmark program.

Another important point for translating C to safer Rust is the potential strategies for making
the translated programs safer. Ultimately, unsafety stems from the fact that the compiler does
not have enough information about a piece of code (e.g. the underlying types in the case of void
pointers, or the code being executed in the case of external functions), and some of these features
such as untagged unions, and void pointers are resorted to by programmers because of C’s lack of
language features. In all cases except external functions and internal assembly, the translator would
have access to the code being executed, and it can use heuristics or other logics besides Rust’s
type system to derive the information to provide to the compiler. We propose a method in the
next section with this underlying idea to derive the lifetime and borrowing information the Rust
compiler needs to make raw pointers safe. We also focus on specifically raw pointers that fall in
Lifetime category, as they do not have other causes of being raw pointers, and the techniques for
making them safe would also be used for determining lifetimes of other categories of raw pointers.
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Fig. 3. Cumulative percentage of functions made safe by fixing the given unsafety category. The “Total” line
shows this number for all functions across all benchmarks.

Finally, we need to make a distinction between the abstractions the two languages use. Technically
safe Rust code translated directly from C and idiomatic Rust code can look completely dissimilar
because of the abstractions Rust and the Rust standard library provide. For example, safe code
translated from C may use while loops and indexing to go over arrays and other data structures
whereas an idiomatic Rust program would use mutable and immutable iterators, and higher-order
functions such as map for the same purpose purpose. Similarly, the C program may not have written
in a way that is not amenable to direct translation due to the algorithms and data structures being
used (such as graphs represented with complex and implicit ownership semantics). To solve both
of these problems, the translation tools will need to operate at a higher level than translating the
direct operational semantics of a program.

3 TURNING RAW POINTERS INTO SAFE REFERENCES

In this section we describe a first attempt to automatically translate a C program into a safer Rust
program, building on top of the c2rust syntactic translation from C to completely unsafe Rust. Our
study shows that, while addressing only a single category of unsafety reasons will not be sufficient
to remove a majority of the unsafety in the translated program, the Lifetime category of raw
pointers is a good place to start. Thus, our goal is to translate a subset of the raw pointers in the
Lifetime category to safe references. We first start with a high-level description of our technique
in this section; more details are provided in Section 4.

A raw pointer can be converted into a safe reference if, in the resulting rewritten program, the
Rust compiler can prove that the reference guarantees a single owner and can also derive the
appropriate lifetime for the object being referred to. One possible approach would be to implement
a static analysis for either the original C program or the translated unsafe Rust program to compute
this information; however, the drawbacks of such an approach are: (1) designing and implementing
an efficient, useful analysis that can reason about aliasing and lifetime information in conformance
with Rust’s sophisticated type system is highly non-trivial; and (2) even if the implemented analysis
can prove safety, that doesn’t matter unless the Rust compiler can also prove safety, i.e., the analysis
must be tuned to be no more precise than the Rust compiler.

Our key insight is that we can piggy-back on top of the Rust compiler and allow it to derive the
information we need to infer which Lifetime raw pointers can be made safe. To do so, we first
optimistically rewrite the unsafe Rust program to convert all of the relevant raw pointers into safe
references, making optimistic assumptions about mutability, aliasing, and lifetimes. This optimistic
version is very unlikely to compile—but the errors that the Rust compiler derives while attempting

, Vol. 1, No. 1, Article . Publication date: September 2021.



Translating C to Safer Rust — Extended Version 15

to compile it allow us to refine our initial optimistic program into a more realistic version. By
iterating this process in a loop, we essentially use the Rust compiler as an oracle to continually
refine the program until it passes the compiler. For this first attempt we do not try to introduce any
additional memory management mechanisms (e.g., reference counting) that might allow more raw
pointers to become safe, focusing purely on converting raw pointers into safe references with the
same memory representation and performance characteristics; future work will investigate these
other possibilities.

During our translation, we assume that any pointers passed to an API are valid pointers (null or
a valid reference to an object) if the program dereferences them, because dereferencing an invalid
pointer would result in undefined behavior in both C and Rust. Therefore, these raw pointers could
be converted to safe references without changing the defined program behavior, if their use does
not invalidate Rust’s borrow checker rules.

Our technique consists of three stages after the c2rust translation of the original C program:

(1) Connect the definitions and uses of types and functions across modules, and remove unnec-
essary unsafety and mutability markers. (Section 3.1)

(2) Determine initial lifetimes to convert unsafe raw pointers into safe references. (Section 3.2)

3 Iteratively rewrite the program to resolve lifetime inference and borrow checking errors.
(Section 33)

We will explain our technique in relation to an example C program shown in Figure 4a, which
implements a binary search tree. Figure 4b shows the result of running c2rust on the C program.
We will step through each stage of our technique in the remainder of this section, demonstrating
on the given example.

3.1 Connecting functions and data structures across modules

The original C program may consist of multiple compilation units (e.g., Figure 4a has two: bst.c
and main.c). c2rust translates each compilation unit separately into its own Rust module (e.g.,
Figure 4b has bst.rs and main.rs). However, unlike C, all Rust modules in a program are compiled
together in the same compilation unit. Because c2rust translates each C compilation unit separately,
the translated modules contain (1) duplicate data structure declarations from shared header files;
and (2) functions declared as extern because they are defined in a different module, even though
the definitions are actually available during compilation. In Figure 4b, note that main.rs contains
a duplicate declaration of node_t and declares both find and insert as extern functions. All calls
to declared extern functions must be marked unsafe, regardless of the fact that the functions are
not truly extern. The result is that, even if we manage to make find and insert safe in the bst.rs
module, main_0 must remain unsafe because it contains calls to those functions and they were
declared extern in the main.rs module.

The immediate solution is to remove the extern declarations and replace them with imports
from the modules in which those functions are defined. However, doing so can cause a type
error if the functions use a data structure that has been duplicated across modules. Rust’s type
system is nominal, and these duplicated definitions are treated as separate types. In Figure 4b
the type bst: :node_t and the type main: :node_t are two different types; because the formerly
extern functions are now imported and use the duplicated type, there is now a type error in the
example program. In order to fix this issue, we need to detect and deduplicate these data structure
declarations. After this step, we remove unnecessary mut markers and unsafe markers. For our
example, the only unnecessary mut markers are in the arguments of find and insert. All the unsafe
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bst.h: BST node definition
typedef struct node_t {

node_t+ left;

node_t+ right;

int value;

}s

node_t+ find (int value,
void insert(int value,

node_t+ node);
node_t+ node);

bst.c:
#include "bst.h"

BST implementation

node_t« find(int value, node_t+ node) {

if (value < node->value && node->left) {
return find(value, node->left);

} else if (value > node->value &% node->right)

{

return find(value, node->right);

} else if (value == node->value) {
return node;

}

return NULL;

}

void insert(int value, »node_t node) {
Implementation omitted for brevity.

}

main.c: program entry point
#include "bst.h"

int main() {
node_t+ tree = malloc(sizeof(node_t));
tree ->value = malloc(sizeof(int));
«(tree ->value) = 3;
insert (1, tree);
insert (2, tree);
«(find (3, tree)->value) = 4;
return 0;

(a) A C program implementing a binary search
tree. We omit the implementation of insert for
brevity.

Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf

bst.rs
use std::os::raw::c_int;
#[derive (Copy, Clone)]
pub struct node_t {
pub left: smut node_t,
pub right: smut node_t,
pub value: c_int,

}

pub unsafe fn find (mut value: c_int, mut node:
«»mut node_t) -> smut node_t {

}

pub unsafe fn insert(mut value: c_int, mut node:
»mut node_t) { . </}

main.rs
use std::os::raw::c_int;
extern "C" {
fn find (mut value: c_int, mut node:
»mut node_t) -> smut node_t;
fn insert(mut value: c_int, mut node:
smut node_t);

duplicate definition of node_t
#[derive (Copy, Clone)]
pub struct node_t {

pub left: smut node_t,

pub right: «mut node_t,

pub value: c_int,

}

pub unsafe fn main_0() -> int { /=« «/ )

(b) The Rust program produced from Figure 4a.
Function bodies,main, and main_0 are omitted for
brevity, as are compiler directives for C compati-
bility (e.g. for disabling name mangling, ensuring
C ABI, and structure field alignment).

Fig. 4. An example a of C program translated to Rust by c2rust.

markers in the example code are still necessary due to raw pointer dereferences. Figure 5 shows

our example after this process.

3.2 Initial optimistic rewrite

The next stage is to rewrite the program into a version with no unsafe annotations due to Lifetime
raw pointers (unsafe annotations due to other categories of unsafety will remain). Henceforth we
will just refer to “raw pointers”; this term should be taken as Lifetime raw pointers. The rewriting
process is optimistic in the sense that it will likely result in a non-compilable program. The first
step of this stage is to rewrite raw pointer declarations (e.g., data structure fields and function
parameters) into reference declarations. Specifically, we convert the raw pointers into optional
references in order to account for null pointer values: Option<aT>, Option<gmut T> and Option<Box<T>>
represent immutably borrowed, mutably borrowed, and owner pointers, respectively. We assume
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bst.rs

use std::os::raw::c_int;

#[derive (Copy, Clone)]

pub struct node_t {
pub left: smut node_t,
pub right: «mut node_t,
pub value: c_int,

}

pub unsafe fn find(value: c_int, node: smut node_t) -> «mut node_t {
if value < (»node).value && !(+node).left.is_null() {
return find(value, (+«node).left)
} else {
if value > (+node).value && !(+node).right.is_null() {

return find(value, (+node).right)
} else if value == (+node).value {
return node
}
}
return 0 as smut node_t;
}
pub unsafe fn insert(value: c_int, node: «mut node_t) { o))
main.rs
use std::os::raw::c_int;
use bst::{node_t, insert, find};
pub unsafe fn main_0() -> int {
let mut tree = malloc (::std::mem::size_of::<node_t>()) as » mut node_t;
(+tree).value = malloc (::std::mem:: size_of::<c_int >()) as » mut c_int;
*(«tree).value = 3;

insert (1, tree);

insert (2, tree);

«(»find (3, tree)).value = 4;
return 0;

Fig. 5. The Rust program from Figure 4b after deduplicating struct definitions and converting extern functions
to imports. The unnecessary mutability annotations have been removed from the function arguments.

for this stage that all declarations are borrowed; the third, iterative stage may later convert them
into owners instead.

When declaring a reference in function signatures or data type definitions, we must provide
its lifetime information. This information includes the lifetime of the reference itself and also the
information for any referenced types that are themselves parameterized by lifetime. Our goal for
this stage is to generate lifetime information that minimally constrains the declarations, in order to
start with the most optimistic lifetime assumptions.

For each raw pointer data structure field we provide a lifetime based on its type, using a different
lifetime variable for each type.® We also fill in lifetime type parameters, using the same lifetime
variables for all instances of the same type. Mutably borrowed references are not cloneable (i.e.,
trivially copyable), so we remove the #[derive(Copy,Clone)] annotation from any affected data
structures. For our example program, the end result of rewriting the node_t data structure is:

pub struct node_t<'al, 'a2> {
pub left: Option<&'al mut node_t<'al, 'a2>>,
pub right: Option<&'al mut node_t<'al, 'a2>>,
pub value: Option<&'a2 mut c_int >,

8We could also give each field a unique lifetime, but this type-based heuristic works well empirically and makes it easy to
handle recursive type declarations.
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pub fn borrow<'b, 'a: 'b, T>(p: &'b Option<&'a mut T>) -> Option<&'b T> {
p.as_ref () .map(|x| &~+x)
}
pub fn borrow_mut<'b, 'a: 'b, T>(p: &'b mut Option<&'a mut T>)
-> Option <&'b mut T> {
p.as_mut () .map (| x| &mut =«x)

Fig. 6. Helper functions which assist in rewriting pointers to references. They allow borrowing an optional
reference for a shorter lifetime, where ’a is the original object’s lifetime and ’b is the borrowed object’s
lifetime.

Once the data structures are rewritten, we rewrite the function signatures in accordance with
the new declarations, again making all raw pointers into borrows. Unlike data structure fields, for
function signatures we use a unique lifetime for each parameter. For our example, the rewritten
function signatures for find and insert are:

fn find <'al, 'a2, 'a3, 'a4, 'a5, 'a6>(value: c_int, mut node: Option<&'al mut node_t<'a2, 'a3>>) ->
Option <&'a4 mut node_t<'a5, 'a6>>;
fn insert <'al, 'a2, 'a3>(value: c_int, mut node: Option<&'al mut node_t<'a2, 'a3>>);

The signature of main_o does not change, since it does not involve any pointers. Next we rewrite
function bodies, which entails four types of rewrites:

(1) We rewrite any call to malloc that allocates a single object (as opposed to an array) into a call
to Box: :new, a standard Rust function for safe heap allocation. We determine which malloc calls
to rewrite by checking for calls that are translated from malloc(sizeof (T)) in the C program.

(2) We delete any call to free if we can replace all pointers that are freed at that call site with
safe references. If we cannot replace all such pointers, then we need to keep the call to free
so we roll back any pointers reaching this free that were previously rewritten.

(3) We rewrite any equality comparisons between references, which by default are value equality
checks in Rust (i.e., checking equality of the objects being referenced), into a reference
equality check (i.e., checking whether two references refer to the same object). This rewrite
preserves the intended semantics of the original program.

(4) Dereferences must be rewritten to unwrap the optional part of the reference (recall that we
replaced the raw pointer with an optional reference). Unwrapping the option consumes the
original option object because option<T>, unlike raw pointers, is not automatically copyable.
Therefore, we do the following to avoid consuming the original object in the contexts that it
is not assigned to or deliberately consumed:

e When using an immutable reference, we clone it so the original object is not destroyed;

e When using a mutable reference, we make a mutable or immutable borrow depending on
the context it is used in. We describe how we create these borrows below.

To help with re-borrowing mutable references, we use the helper functions borrow and borrow_mut
defined in Figure 6. For each pointer p in the original program that we converted to a mutable
reference, we perform the following rewrites:

e If p is passed to a mutable context (a context requiring a &mut T), we rewrite p to borrow_mut(p).
e if p is passed to an immutable context (a context requiring a &T), we rewrite p to borrow(p).

e if p is dereferenced, we rewrite *p as *xp.as_mut().unwrap() to get a mutable reference and
immediately dereference it. If it is dereferenced in an immutable context, we use as_ref instead
of as_mut. Note that unwrap, as_mut, and as_ref all come from the Rust standard library.
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bst.rs

use std::os::raw::c_int;

pub struct node_t<'al, 'a2> {
pub left: Option<&'al mut node_t<'al, 'a2>>,
pub right: Option<&'al mut node_t<'al, 'a2>>,
pub value: Option<&'a2 mut c_int >,

}

impl<'al, 'a2> std::default::Default for node_t<'al, 'a2> {

}

pub fn insert<'al, 'a2, 'a3>(mut value: c_int,
mut node: Option<&'al mut node_t<'a2, 'a3>>) {
}
pub fn find <'al, 'a2, 'a3, 'a4, 'a5, 'a6>(mut value: c_int, mut node: Option<&'al mut node_t<'a2, 'a3>>)

-> Option<&'a4 mut node_t<'a5, 'a6>> {
if value < «x(++node.as_ref().unwrap()).value.as_ref().unwrap() && ! (++node.as_ref().unwrap()).left.
is_none () {
return find(value, borrow_mut(&mut (+node.unwrap()).left))
} else {
if value > ««(++node.as_ref().unwrap()).value.as_ref().unwrap() && ! (++node.as_ref().unwrap()).right.
is_none () {
return find(value, borrow_mut(&mut (+node.unwrap()).right))
} else { if value == s«(++node.as_mut().unwrap()).value.as_mut().unwrap() { return node } }

}

return None;

main. rs
use std::os::raw::c_int;
use bst::{node_t, insert, find};

pub fn main_0() -> int {
let mut tree = Some(Box::new(node_t::default()).as_mut());
wx(++ tree.as_mut () .unwrap()).value.as_mut().unwrap() = 3;
insert (1, borrow_mut(&mut tree));
insert (2, borrow_mut(&mut tree));
+x(++ find (3, borrow_mut(&mut tree)).as_mut().unwrap()).value.as_mut().unwrap() = 4;
return 0;

Fig. 7. The Rust program from Figure 5 after converting raw pointers into references.

We rewrite null pointers into None, i.e., the option value that does not contain anything. We
similarly rewrite the null pointer check p.is_null() into p.is_none(). Figure 7 shows our example
program after all of these transformations.

3.3 Ilteratively rewriting the program until it compiles

The initial, optimistic rewrite may have resulted in a non-compilable program, i.e., one for which
the Rust compiler cannot prove safety. The last stage of our technique iteratively attempts to
compile the program with the Rust compiler; for each failed attempt we take information from the
compiler errors to selectively rewrite our optimistic changes until we reach a version that compiles.
These rewrites in some cases provide the compiler with more refined lifetime information or modify
reference types, while in other cases we are forced to walk back on the changes and leave some
raw pointers as unsafe. When a version of the program fails to compile, we track the following
information:

e Any additional lifetime constraints the compiler reports. For example, when compiling the
program in Figure 7 the compiler reports that for find there is an additional constraint ’a1
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’a2, meaning ’al needs to outlive ’a2. For the next iteration we rewrite the program to
explicitly include this constraint and any additional constraints learned from similar errors.

e The references involved when a reference outlives an object. If the original object is on the
heap, we promote the reference to an owned object on the heap and move the object instead
of borrowing it, i.e., converting from Option<&T> to option<Box<T>>. If the original object was
on the stack, then we demote these references to raw pointers.

o If any rewritten malloc and free calls were involved in the failure. Rewritten calls can fail to
compile when the original C program uses magic numbers or a custom allocation pattern. In
subsequent iterations we do not attempt to rewrite any values that come from these particular
calls to malloc, or that flow into these particular calls to free.

o The references involved in either use-after-move errors or multiple mutable borrow errors.
We rewrite these references back to raw pointers.

When we demote a reference back to a raw pointer, we need to make all other references that
interact with that demoted reference into raw pointers as well. We use the taint analysis from
Section 2.3.1 to propagate the required information about any references we decide to convert back
to raw pointers because of borrow errors. Similarly, if we decide to make a reference owned, all the
values that flow into it must also be owned. We propagate these facts by performing a subset-based
version of the taint analysis we used in Section 2.3.1 and marking the references promoted to owned
references as sinks.

We demonstrate these steps on the example program in Figure 7. For this example we do not
encounter issues involving the last two cases above.

The first compilation attempt fails with a compiler error stating that the following lifetime
constraints are not satisfied: *al : ’a4,’a5 : ’a2,and ’a6 : ’a3. All of these constraints come
from the return node; statement on line 23, and they are all rooted in the fact that the reference find
returns cannot outlive its argument. Specifically, a1l : ’a4 comes directly from the references,
and the other two constraints come from the fact that the data structures are covariant on their
lifetime arguments and the functions are contravariant on their lifetime arguments. To resolve the
errors we add these constraints to the signature of find and continue iterating.

The second compilation attempt also fails, this time with a compiler error stating that recursive
calls to find require the additional constraints a2 : ’a5and ’a3 : ’a6. We add these constraints
as well, and continue iterating.

The third compilation attempt fails again, with a compiler error stating that we return a value
that cannot outlive borrowing node in lines 19 and 22. To resolve the error we rewrite the borrows in
these dereferences *+node.as_mut () .unwrap() as *node.unwrap(), ultimately consuming the reference
node. This heuristic works for many of the cases in our benchmarks, but it might create use-after-
move errors later on, in which case we would walk the rewrites back and make the node parameter
of find a raw pointer again. In addition we get another lifetime error indicating that the variable
tree in main function outlives the object it references (line 33), the temporary boxed object. To fix
this error we we convert tree to be an owned object (Option<Box<node_t>>).” Now that tree is an
owned reference, we rewrite the places it is borrowed as tree.as_mut().map(|b| b.as_mut()) to get a
mutable reference inside the option without consuming tree. We need to propagate the fact that
tree is now an owned reference to all the values that flow into tree. After using our taint analysis

9We could potentially make it a Box<node_t> without the Option part because it is never assigned to a value containing
None, however we apply the same strategy independent of the position (including struct fields) and we need the optional
types when creating default values for struct fields.
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to propagate this fact, we discover that the box at line 33 should be an owning reference, so we
make that expression own the allocated object by removing the call to as_mut() on that line.

After these rewrites, the program compiles and all raw pointers have been converted into safe
references. Note that we omitted the implementation of insert in this example to keep the number
of steps shorter. Figure 8 shows the final fixed program.

bst.rs
use std::os::raw::c_int;

BST node
pub struct node_t<'al, 'a2> {

pub left: Option<&'al mut node_t<'al, 'a2>>,

pub right: Option<&'al mut node_t<'al, 'a2>>,

pub value: Option<&'a2 mut c_int >,
}
impl<'al, 'a2> std::default:: Default for node_t<'al, 'a2> {
}
pub fn insert <'al, 'a2, 'a3>(mut value: c_int,

mut node: Option<&'al mut node_t<'a2, 'a3>>) {

}
pub fn find <'al, 'a2, 'a3, 'a4, 'a5, 'a6>(mut value: c_int, mut node: Option<&'al mut node_t<'a2, 'a3>>)
-> Option<&'a4 mut node_t<'a5, 'a6>>
where 'al: 'a4, 'a5: 'a2, 'a6: 'a3, 'a3: 'a6, 'a2: 'a5

{
if value < «x(++node.as_ref().unwrap()).value.as_ref().unwrap() && ! (++node.as_ref().unwrap()).left.
is_none () {
return find(value, borrow_mut(&mut (+node.unwrap()).left))
} else {
if value > ««(++node.as_ref().unwrap()).value.as_ref().unwrap() && ! (++node.as_ref().unwrap()).right.
is_none () {

return find(value, borrow_mut(&mut (+node.unwrap()).right))
} else { if value == ««(++node.as_mut().unwrap()).value.as_mut().unwrap() { return node } }
}
return None;
}
main. rs
use std::os::raw::c_int;
use bst::{node_t, insert, find};
pub fn main_0() -> int {
Using Box to avoid malloc clutter
let mut tree = Some(Box::new(crate::node_t::default()));
«x(+« tree.as_mut () .unwrap()).value.as_mut().unwrap() = 3;
insert 2 nodes

insert (1, tree.as_mut().map(|b| b.as_mut()));
insert (2, tree.as_mut().map(|b| b.as_mut()));
change the value of node containing 3 to 4
«x(+« find (3, tree.as_mut().map(|b| b.as_mut())).as_mut().unwrap()).value.as_mut().unwrap() = 4;

return 0;

Fig. 8. The safe Rust program with no raw pointers after applying all steps of our technique.

4 METHOD IN DETAIL

This section provides details of our method, which was previously outlined in Section 3.

4.1 Minimizing the number of unsafety and mutability markers

As a first step, we want to minimize the number of unnecessary unsafe and mutability annotations
in the program. Fewer mutability annotations generally permits more safe programs, as mutable
references are inherently more restricted.
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4.1.1 Deduplicating function and data structure declarations. As explained in Section 3.1, differences
in the granularity of translation units between C and Rust cause functions to be unnecessarily
externally-linked and data definitions to be duplicated. We resolve these issues with the following
transformations:

e C does not have name mangling, so all external functions of the same name refer to the same
functions in a linked program. This allows us to rewrite external function declarations with
the same name into Rust import statements.

e In most C programs, the struct definitions with the same name and same field names refer to
the same type across multiple translation units. This allows us to aggregate type definitions
according to their names and fields, arbitrarily choose one as the canonical version, then
import the canonical version from other modules.

e Similar to structs, we rewrite other external type declarations used in external function APIs
as imports to types with the same name.

After these transformations, we can safely remove the unsafe annotation from functions lacking
unsafe behavior.

4.1.2  Removing unnecessary mutability markers. We perform a simple global flow-insensitive taint
analysis to check whether a place (i.e., a variable, return value, field access, or dereference) is ever
used in a mutable context (i.e., assignment, passed to an external function as a mutable pointer, or
mutably borrowed). We mark all values flowing into these places as mutable. We assume that the
types of function pointers and the signatures of externally-linked functions are accurrate when
performing this analysis. We then remove any mutability annotations this analysis did not derive
from the program.

4.2 Creating the most strict program with initial lifetimes

Next, we try to convert raw pointers into safe references. In order to do this, we need to assign
lifetimes to the raw pointers, and define the relationships between the assigned lifetimes to tell
the compiler which values are supposed to outlive which other values. We need to derive this
information only for the lifetimes that occur in struct fields (Section 4.2.2) and function signa-
tures (Section 4.2.3), as the type checker can infer the lifetimes in function bodies from these
specifications. Because our representation of safe references has a different semantics than raw
pointers (Section 4.2.1), we need to modify function bodies to get ultimately the same semantics
(Section 4.2.4). Similarly, calls to malloc need to be converted to safe alternatives.

4.2.1 Different ways to represent a pointer. For our purposes, we identify three safe ways to hold a
reference to an object in Rust:

e Owned pointers (Box<T>) represent a boxed T allocated on the heap. T is owned by this
pointer, and will be deallocated when the pointer goes out of scope.

e Immutably borrowed references (3'a T) represent read-only references to T that can be
freely copied. No copy may outlive the lifetime ’a, which itself cannot outlive T.

e Mutably borrowed references (&'a mut T) represent mutable references to T, which may
not be freely copied.

All three always refer to valid, non-null objects. However, since raw pointers may be null, we wrap
each of these alternatives in option, which permits the null-like value None. As such, we use Option<&
T>, Option<amut T>, and Option<Box<T>> for our representation. Rust guarantees that this option-based
representation has the same underlying memory representation as raw pointers, thanks to “null
pointer optimization” [The Rust developers [n.d.]a].
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Table 7. Rewriting a pointer-producing expression p to not consume the pointer. The borrow and borrow_mut
functions are defined in Figure 6.

Pointer type Immutable context Mutable context
Option<&T> p.clone() Pointer use error
Option<&mut T> borrow(&p) borrow_mut (&mut p)

Option<Box<T>> p.as_ref().map(|b| b.as_ref()) p.as_mut().map(|b| b.as_mut())

Borrowing and dereferencing optional references. Using optional references (e.g. Option<&T
>) is less ergonomic than using a raw pointer (e.g. * const T) or an unwrapped reference (&T) because
of copying semantics. Raw pointers do not have any aliasing requirements, so they are trivially
copyable, as long as the pointer itself is unmodified (not the pointed value). Immutable references
are similarly copyable. However, Option<&T> is not copyable, so it requires explicit cloning. Similarly,
Option<gmut T>, and Option<Box<T>> require explicit borrowing when needed, even though &nut T and
Box<T> will implicitly be borrowed when needed. When we have a pointer valued expression p used
in a function body, we rewrite p according to Table 7. Note that we cannot borrow the value inside
an immutable pointer in a mutable context; such a case is a violation of Rust’s type system, and we
would instead backtrack and keep the relevant pointer values as raw pointers.

When we need to dereference a pointer, we first borrow it with a mutability depending on the
context, then call option: :unwrap() to get the borrowed reference inside. Calling option: :unwrap() is
guaranteed to crash the program if the optional value contains a None. However, this case exactly
corresponds to dereferencing a null pointer in the original program, which is undefined behavior in
C. To illustrate dereferencing on an example, suppose we have a mutable pointer expression p, which
we then dereference in an immutable context (xp). We would rewrite this to *borrow(&p) .unwrap(),
where borrow is defined in Figure 6.

Reference equality vs. value equality. Raw pointers and references have different equality
semantics, where raw pointers use reference equality (as with pointers in C), and references use
value equality of the underlying value being pointed to. To preserve the semantics of the original
program, we convert equality checks on two references to call to a function that performs a reference
equality check.

Null pointers. We rewrite null pointer checks (calls to is_nul1()) as calls to is_none(). is_none
itself immutably borrows the option, so we do not need to clone or borrow it in this case. In places
where the original program has a null pointer constant, we rewrite it as None.

4.2.2  Rewriting struct definitions: field lifetimes and default values. When generating an initial set
of lifetimes for a data structure definition, our goal is to make the data structure be as unconstrained
as possible. As such, we initially start with all references being mutably borrowed instead of owned.
We may convert them on a per-field basis in when fixing the errors from Rust’s borrow checker
(Section 4.3). Each field is generally given a distinct lifetime. However, we observe that fields of the
same type in the same struct generally come from the same source, and therefore we heuristically
give these the same lifetime.

Another place where we need to introduce lifetime variables in a struct body is the lifetime
parameters of other structs in the definition. For example, consider these two structs:

struct Foo {

value: * const i32, // 32-bit signed integer

3
struct Bar {
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foo: * const Foo,

1

When rewriting the struct Foo, we introduce a lifetime parameter for it, we also need an extra
lifetime parameter in Bar to pass to Foo:

struct Foo<'a> {
value: & 'a i32,

3

struct Bar<'a, 'b> {
foo: & 'b Foo<'a>,

3

A naive approach to handle this case is to just add extra lifetime parameters for each struct in the
definition that takes lifetime parameters. However, this would not work for recursive data types
such as node_t from Section 3. We propose a general algorithm to generate lifetimes for arbitrary
mutually recursive definitions with the following constraints on the generated lifetimes:

e All fields of the same type (or more generally, all fields of the types involved in the same
mutually recursive type definition) in a definition share the same lifetime variable.

e All instances of the same struct in a definition share the same lifetime parameters. For
example, in the definition of node_t, both instances of node_t for the left and the right subtree
use the same lifetime parameters ’al and ’a2.

o All references in a nested pointer are assigned the same lifetime. For example, x const * const
T is converted to Option<&'a Option<&'a T>>.

Our algorithm is shown in Figure 9. The first step we take is building a points-to graph of all structs
in the program and to label the edges with fields. A struct Foo points to another struct Bar if it has a
(possibly nested) pointer field that points to a Foo object. In our algorithm, once we compute the
strongly-connected components (SCCs), Each SCC corresponds to a set of mutually recursive struct
definitions. After building the SCC points-to graph, we aggregate the labels from the original graph,
and also add the source nodes for each label. For each struct definition, we collect the lifetime
names on all edges reachable from that struct’s SCC to determine its lifetime parameters. When
rewriting a field f of a struct S to a borrowing reference, we use the assigned lifetime name from
the edge that contains the label S.f.

Build a points-to graph of all structs in the program.
Label all edges in this graph with their fields.
Compute the SCCs of this graph.

Build the points-to graph between SCCs.

for all edge SCC; — SCC; in the SCC graph do
Label the edge with (S;.f1, S2.f2, . . .) where Sy, S, . . . are structs in SCC; and each correspond-
ing field fi, f2, ... points to a struct in SCC;.
end for
Assign a unique lifetime variable to each edge in the SCC graph that correspond to a borrowing
reference.

Fig. 9. Our algorithm for computing lifetime parameters of structs.
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When allocating a struct on the heap (i.e., when we rewrite a malloc call), Rust requires initializ-
ing it with a default value to prevent reading from uninitialized memory. All fields (rather than the
data they point to) in the structs we rewrite fall into one of these categories: raw pointers, optional
references, primitive types, or other structs. We implement the Default trait for all of our structs,
and the Default trait is implemented for option and the primitive types so we use Default: :default
to generate the default values for the fields of these types. We initialize all raw pointers inside a
struct (that is all the fields that are not converted to safe references) with null pointers.

We do not rewrite a struct’s definition in the following cases:

o The struct is contained in (directly or through pointers) a type that is part of an external
APL In this case, we cannot have lifetime guarantees because the external API may hold
references to the value, keep a copy of it, or be responsible for its allocation/deallocation.

e The struct contains (not points to, but immediately contains) a (C-style) union. In this case,
we cannot generate a default value for the struct, because there are not any well-defined
default values for unions. One may opt into picking one of the variants and generating the
default value for that field. In general, we keep unions out of the scope of our method, and
this is an orthogonal issue.

In both cases, we mark the pointer-typed fields in the struct as raw pointers. We cover how this
marking works in Section 4.3.1.

We do not rewrite unions, as they are out of the scope of our method; getting a value from a
union is unsafe behavior, and it may allow forging invalid references. The Rust programs translated
from C do not use Rust enums (sum types), and the C-style enums are just integers which do not
contain any references, so the only flavor of algebraic data type we need to handle is structs. Our
technique in this section can be extended to enums by considering the points-to edges from all
possible variants.

4.2.3  Function signatures. After determining the lifetimes in struct fields, we rewrite function
signatures. For each parameter in a function, if that parameter is not tainted by any of the cases
of raw pointers we do not handle, we initially convert it to a borrowing reference. We assign a
unique place for each lifetime in a function signature to make the function signature as generic
as possible. In later stages, we add lifetime constraints between these lifetimes or remove some
of them as some of the borrowing references are converted to raw pointers or owning references.
Assigning a unique lifetime variable in each place may yield unwieldy function signatures (such
as the signature of find in Figure 7). As we discover relationships between the lifetimes in the
function signature, we could unify them for readability. For example, we can unify *a2 and ’a5 in
find because we generate the constraints a2 : ’a5and ’a5 : ’a2, proving their equality. This
change does not affect the correctness of our result and we do not implement it in our prototype.

4.2.4  Function bodies. Inside function bodies, we recursively visit all expressions, maintain a
record of whether the expression is used in a mutable or immutable context, and rewrite all uses of
pointers according to Section 4.2.1. We rewrite calls to malloc and calloc that allocate a single
object (e.g. malloc(size_of<T>()) as * mut T) using Box::new

We handle the following patterns of calling malloc and calloc, including their * mut T variants:

® malloc(size_of<T>()) as * const T
® calloc(1, size_of<T>()) as * const T
® calloc(size_of<T>(), 1) as x const T

These patterns cover all allocations of single objects in our benchmarks. Other patterns of allocations
or custom allocation functions can be added as pattern matches to our tool.
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We rewrite a call to malloc(size_of<T>()) as * const T as Some(Box::new(T::default()).as_ref()) to
produce an immutably borrowing reference. These references may become owning references if
there are any lifetime errors involving them, in which case we remove the call to as_ref. If the
result of malloc is cast into a mutable pointer, we use as_mut instead.

We remove calls to free, if all calls to malloc that flow into these free calls are rewritten. If
any malloc that flows to a call to free cannot be rewritten, we undo rewriting all malloc calls
that flow into that call to free.

4.3 Continually fixing lifetime errors

After creating the program with initial lifetimes, we incrementally modify the program using the
following procedure:

(1) Generate the program corresponding to whatever the last set of changes to make was. Initially,
this is an empty set.
(2) Run the Rust compiler on the program, and collect the lifetime errors. Then, for all errors:

(a) Record the changes to fix each error.

(b) If the changes involve promoting a location to an owned reference, mark all values flowing
into that value also as owned.

(c) If the changes involve promoting a location to a raw pointer, mark all values flowing from
and to that location as a raw pointer (i.e., remove them from the scope of our method in
the following iterations).

(3) If there are no errors, we are done. Otherwise, go to step 1.

In the following sections, we describe how we represent the sets of changes, and our analyses and
heuristics for each type of error.

4.3.1 Configurations. There are two types of changes we perform on the original program:

(1) Converting raw pointers into owned or borrowed references, and
(2) Adding lifetime constraints.

We represent our sets of changes as configurations. A configuration consists of a mapping from
program locations to the type of pointers they are converted to, along with corresponding lifetime
constraints. We represent a poset of configurations using the definition in Figure 10. A configuration
maps program locations (i.e., variables, parameters, return values, struct fields, and dereferences of
any of these in case of nested pointers) to the kinds of pointers they should have. Each location
also maps to the upper bound of each lifetime variable. A qualified lifetime variable is a lifetime
variable qualified with which function signature or type definition it is used in; the second mapping
maps qualified lifetime variables to the sets of variables in the same scope (function signature or
type definition) that are upper bounds of it. As iterations progress, we move from smaller to larger
configurations, where the largest configuration maps each reference to a raw pointer. Because
configurations form a poset, and because there are finitely many locations and lifetime variables,
this guarantees termination. Moreover, it guarantees we will terminate with a program containing
the minimal number of raw pointers.

Configuration = (Location — PointerKind) X (QualLifetimeVar — Z(LifetimeVar))
QualLifetimeVar = (Function U TypeName) X LifetimeVar

PointerKind = {borrowed, owned, raw} where borrowed C owned C raw
Fig. 10. The configurations of our program rewriting method.
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4.3.2  Fixing lifetime errors we get from the Rust compiler. The Rust type and borrow checkers work
in two stages, and they return the following lifetime errors:

(1) The type checker/region inferer assigns appropriate lifetimes (a.k.a. regions) to each value in
the program. If it cannot assign lifetimes because it cannot match them according to the type
signature, it gives a type error with the mismatching lifetimes.

(2) If the region inferer can assign the appropriate lifetimes, then the borrow checker checks if
there are any forbidden uses of objects according to the lifetimes. The errors that stem from
the borrow checker are:

(a) use after move

(b) moving a value while it is borrowed by a value that is still live

(c) having multiple references that are alive and borrowing the same object, and at least one
of them is mutable

(d) the borrowed value does not live long enough

(e) alocal variable is returned by reference (i.e. borrowed)

In all of these cases, we use the data used by the compiler’s diagnostics engine, along with the
result of the type checker, to get the relevant lifetimes and expressions. Some types of ownership
or lifetime errors are never observed because we do not mutate values marked immutable, and we
do not process pointers interacting with global variables.

We resolve case 1 above by extending our configuration with the lifetime constraint the type
checker could not derive from the function signature. For cases 2a and 2b, we cannot represent the
reference as a safe reference because it would need multiple owners. As such, we map the relevant
program location to a raw pointer in our configuration. We resolve case 2c by mapping the relevant
program locations to raw pointers because of Rust’s restrictions on mutable borrows. We resolve
cases 2d and 2e by changing the borrowing reference to be an owned reference by finding the place
the borrowed value is assigned to.

4.4 Implementation

We implemented our method by hooking into the Rust compiler to get type information and lifetime
errors. We used the linter API the Rust compiler provides to access the high-level IR and type
checking results, and to implement our analyses. We used the compiler driver API to run the
compiler, and to collect the lifetime errors. We used rustfix to generate our changes to the source
code of the program for each iteration.

4.5 Limitations

We limited the scope of our method to pointers not involved in external calls, global variables,
pointer arithmetic, or void pointers. Besides these, our method and implementation have some
other limitations.

4.5.1 Readability. The result of our conversion is not as readable as the original C program. The
pervasive use of Option in the safe Rust program also hinders readability, as is not unifying lifetime
variables that are deemed equivalent. We consider these issues to be out of scope for our prototype,
as we can add later passes to reduce unnecessary lifetimes, and potentially use a non-option-based
reference representation if we can statically prove a pointer to be non-null.

4.5.2  Allocating objects containing unions. We do not allocate objects containing C-style unions
because they lack default values. We do not arbitrarily pick one value, as this depends on the
underlying representation of the union and the target architechture. Orthogonal work can convert
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unions into Rust enumerations with appropriate default values, which we could then utilize in our
implementation.

5 EVALUATION

We implement our tool on top of the nightly-2020-10-15 nightly Rust compiler build version
because the compiler API for Rust is not stable. We ran c2rust using an even older version of
the compiler (the newest version that the c2rust developers recommend using, again due to the
compiler API instability) nightly-2019-12-05. We run our experiments on a computer with an
Intel Core i7-4790 CPU and 32 GiB RAM running Ubuntu 18.04.

5.1 Evaluation Setup
We evaluate our technique in two parts, which we label in our tables as described below:

e Resolvelmports: This is the first step of our technique, described in Section 3.1, which
resolves externally declared types and functions and removes unnecessary unsafe and
mutability markers. Note that this step can make functions marked unsafe into safe functions
even though it does not convert any raw pointers into safe references; this effect comes from
removing unsafe annotations that c2rust adds naively when it did not need to.

o ResolveLifetimes: This is the remainder of our technique, described in Sections 3.2 and 3.3,
which converts Lifetime raw pointers (as described in Section 2.3.1) into safe references.
As we did in Section 3 we will use the term “raw pointers” throughout to mean specifically
Lifetime raw pointers.

We collect the following statistics, similar to Section 2.3.1, to measure the impact of our method:
the number of unsafe functions that use raw pointers; the number of raw pointer declarations; and
the number of raw pointer dereferences.

5.2 Results

Table 8 shows the change in the number of unsafe functions in the scope of our method, i.e., those
that are unsafe due solely to the use of Lifetime raw pointers as described in Section 2.3.1. Our
method makes 76% of these functions safe over all of the benchmarks.

We see that Resolvelmports reduces the number of unsafe functions using raw pointers by
54% even though it does not remove any raw pointers. Some of these functions did not have any
underlying cause of unsafety because they use raw pointers as values (e.g., assigning them to certain
fields of a struct in an initializer), which is not unsafe behavior. These cases were categorized as
false positives by our definition, but making them safe requires resolving imports. ResolveLifetimes
makes 46% of the remaining functions safe. The functions that are not made safe by either method
were involved in the following behavior (directly or indirectly):

e Calling free on raw pointers that our method could not rewrite.
o Dereferencing raw pointers that our method could not rewrite.

The impact of ResolveLifetimes on making functions completely safe is limited because to mark
a function as safe we must convert all dereferences of raw pointers contained in the function into
dereferences of safe references. However, making half of the relevant functions safe is a good step
in the right direction.

Table 9 shows the change in the declarations and dereferences of raw pointers. Overall, our
method removes 87% and 89% of Lifetime raw pointer declarations and dereferences, respectively,
over all the benchmarks. These declarations and dereferences make up 8.3% and 9.0% of the total
number of raw pointer declarations and dereferences including all categories of unsafety, because
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Table 8. Number of unsafe functions due uniquely to using raw pointers. Resolvelmports and ResolveLifetimes
are the two phases of our method explained in Section 5.1; the corresponding columns show how many
formerly unsafe functions were made safe by each phase (remembering that ResolveLifetimes is executed on
the result of Resolvelmports).

Benchmark Original ~ResolveImports ResolveLifetimes Remaining Total made safe (%)

libesv 12 0 11 1 92%
urlparser 2 0 0 2 0%
RFK 2 1 0 1 50%
genann 3 2 0 1 67%
lil 6 2 1 3 50%
json-c 20 9 8 3 85%
bzip2 4 0 4 0 100%
libzahl 2 0 2 0 100%
TI 45 44 0 1 98%
tinycc 35 6 2 4 89%
optipng 62 32 9 21 66%
libxml2 36 27 9 18 50%
Total 229 123 46 55 76%

Table 9. Number of raw pointer declarations and dereferences. Orig. = The number from the original program.
Fixed = The number of raw pointer declarations or dereferences removed by our method.

Benchmark ‘ Raw Ptr. Declarations Raw Ptr. Dereferences

Orig. Remaining Fixed Fixed (%) | Orig. Remaining Fixed Fixed (%)
libcsv 18 0 18 100% 148 0 148 100%
urlparser 5 0 5 100% 58 0 58 100%
RFK 1 0 1 100% 0 0 0 -
genann 5 0 5 100% 0 0 0 -
lil 50 27 23 46% 636 22 614 97%
json-c 41 10 31 76% 93 16 77 83%
bZipZ 37 8 29 78% 679 599 80 12%
libzahl 7 0 7 100% 31 0 31 100%
TI 82 82 0 0% 0 0 0 -
tinycc 192 1 191 99% 946 42 904 96%
optipng 210 10 200 95% 606 16 590 97%
libxml2 800 47 753 94% | 4472 120 4352 97%
Total 1448 185 1263 87% 7669 815 6854 89%

of the multi-faceted nature of how raw pointers are used. Three of our benchmarks (RFK, genann,
and TI) do not dereference any Lifetime raw pointers, so they do not get much improvement from
our method. We investigated the declarations and dereferences that our method fails to remove.
They fall under the following categories:

e The pointer is not used safely according to the borrow checker rules. This is the case for
the pointers in 1ibxml2, optipng, and bzip2 that we fail to remove, and one declaration in
json-c.

o The pointer is used in the signature of a function that is used as a function pointer. This is
the case for the pointers in json-c (on all but one declaration we failed to remove), 1il, and
TI that we fail to remove.
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Table 10. Run time performance results of our method. Resolvelmports and ResolveLifetimes are explained in
Section 5.1. “iter” stands for iteration. # iter. is the number of iterations of ResolveLifetimes before we reach a
program with no lifetime errors. iz, is the total time ResolveLifetimes takes per iteration. tgpgpysis/iter is the
time ResolveLifetimes spends in taint analyses described in Section 3.3.

Benchmark  Resolvelmports ResolvelLifetimes Total time (s)
Time (s) #iter.  tirer (S)  Eanalysis/iter (5)  Total time (s)
libcsv 0.3 2 0.5 0.3 1.0 1.3
urlparser 0.4 2 0.6 0.4 1.2 1.6
RFK 0.4 1 0.6 0.4 0.6 1.0
genann 0.6 1 1.0 0.6 1.0 1.6
lil 0.9 1 2.2 1.2 2.2 3.1
json-c 1.2 2 2.4 14 4.8 6.0
bZip2 2.4 2 4.2 2.7 8.4 10.8
libzahl 1.5 1 2.3 1.7 2.3 3.8
TI 2.2 1 4.8 2.1 4.8 7.0
tinycc 9.7 2 13.3 14.8 26.6 36.3
optipng 7.4 3 19.0 12.2 57.0 64.4
libxml2 40.5 5 334.3 321.0 1671.5 1712.0

The other reason for failing to convert some raw pointers is a limitation of our method in that we
do not rewrite function pointer types, so we cannot change the signature of the functions passed
to function pointers. We also inspected the intermediate steps of our tool to look into the root
causes related to the pointers that remain raw due to borrow checker violations. In the bzip2 and
optipng benchmarks, violating the borrow checker for one pointer (in bzip2) and two pointers
(in optipng) are the reason for all of the raw pointers that remain after our technique; in both
benchmarks, the pointer value with illegal borrowing flows into a struct field, so any use of that
struct field also becomes a raw pointer.

5.2.1 Limitations of Resolvelmports. The core assumption of our heuristics for Resolvelmports
is that the structs with the same name and the same fields represent the same data type, so their
definitions can be merged to allow importing functions from other modules in the same program.
This assumption is violated in the tinycc benchmark for four anonymous structs, because the
c2rust-generated names of those structs did not match across modules because of how c2rust
generates names for anonymous structs. Because of this problem we get an error from the Rust
compiler after the ResolveImports phase, and fixing the issue involved importing the four structs
from where they are defined, removing the duplicate definition, and changing the four lines of code
that use them. The fix was a 38-line patch, and it took one of the authors 10 minutes to investigate
and fix the issue.

5.3 Performance

Running our method is a one-time effort when translating the C program to a Rust program.
Table 10 lists the run time performance. In all of our benchmarks except 1ibxml2 and optipng
our method finishes under a minute. In all benchmarks, ResolveLifetimes takes the majority of the
time (harmonic mean: 72.8%). In all benchmarks except 1ibxml2 ResolveLifetimes takes at most
3 iterations to resolve all borrow checker conflicts. On 1ibxml2 our method takes 29 minutes to
finish. 94% of this time is due to the taint analyses we perform to propagate the information on
which locations need to be owned references or raw pointers as described in Section 3.3; the taint
analysis implementation is not very optimized and can be improved.
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6 RELATED WORK

This section covers relevant background regarding C to Rust translation and other related work.
Rust’s ownership system and memory management method are reviewed in Appendix A for
unfamiliar readers.

6.1 Translating C to Rust

There have been several early tools for translating C code to unsafe Rust code, such as Citrus [Citrus
Developers [n.d.]] and Corrode [Sharp 2020]. Both of these tools are now superseded by c2rust [Im-
munant inc. 2020b], an industry-backed C99 to Rust translator. It is made of three parts: (1) the
translator translates the C program to an unsafe Rust program that mirrors the C code; (2) the
refactoring tool helps the programmer refactor and rewrite the unsafe Rust program into a mostly-
safe Rust program by providing program-wide refactoring operations and scripting support; and
(3) the cross-check tool allows for comparing the execution traces of two programs on a test input.
Since c2rust does not have any formal guarantees, it relies on the cross-check tool to validate that
the initial Rust program behaves the same as the original C program and that the incrementally
refactored Rust programs preserve that behavior. Our technique’s implementation leverages the
translator tool to provide an initial unsafe Rust program and the cross-check tool to validate that
the output of our technique behaves the same as the original C program.

6.2 Characterizing Unsafe Code in Rust

Astrauskas et al. [2020] investigate usage of unsafe in practice across the open-source Rust
ecosystem. They use manual inspection and automated queries to analyze program structure, types,
and other information produced by the compiler. They find that most unsafe code is simple and
well-encapsulated, however interoperability with other languages causes unsafe features to be
used extensively. They report that 44.6% of the unsafe function definitions they found in the Rust
ecosystem are bindings for foreign functions used for linking against C libraries. Their results
support that porting these C libraries to safer Rust versions would significantly reduce the overall
amount of unsafe dependencies in the Rust ecosystem.

Qin et al. [2020] empirically investigate the usage of Rust’s safety mechanisms and unsafe in
open source Rust projects. They also build two static bug detectors based on their study results,
and revealed previously unknown bugs. Their results show that 66% of unsafe operations are due
to unsafe memory operations such as type casting and raw pointer manipulation. They also report
that the most common (42%) purpose of unsafe usage is to reuse existing code, including C code
that performs pointer manipulation and calling into external libraries like glibc. These results
indicate that converting C code to safe Rust is an important problem to increase trust in Rust code,
and that converting raw pointer operations to safe Rust references accounts for a significant portion
of this conversion.

6.3 Formalizing Rust Ownership and Type Systems

There are several Rust formalizations in the literature [Benitez 2016; Jung et al. 2017; Reed 2015;
Weiss et al. [n.d.]]. Here, we cover the formalizations that involve the Rust ownership system or
borrow checker, as our technique interacts with both components.

Patina [Reed 2015] is a formal semantics for a pre-1.0 version of Rust. It focuses on using a
syntactic version of the borrow checking algorithm based on lexically-scoped lifetimes. Since then,
Rust has added support for non-lexical lifetimes and other new features, making safety now less
restrictive than in pre-1.0 Rust.
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The RustBelt project [Jung et al. 2017] describes a mechanised formal semantics for a Rust mid-
level intermediate representation (MIR) called Agys. Arys: has been used to derive the verification
conditions for safety of widely-used standard library abstractions using unsafe, and to formally
prove that the API they expose is a safe extension of the language. Ag,s: includes a complete Rust
specification. However, since our technique requires reasoning only about Rust programs translated
from C which do not use all Rust features (e.g., traits), we do not need a complete Rust specification.
Therefore, we decided to base our work on Oxide [Weiss et al. [n.d.]], a simpler formalization
that operates closer to Rust’s source level and only involves Rust features observed in our input
programs. Oxide handles explicit mutability and lifetime annotations with the aim of capturing the
essence of Rust. Oxide is close to Rust’s high-level IR (HIR), and does not model Rust’s module or
trait systems.

There have also been extensions of existing semantic modeling and verification tools to support
Rust. Baranowski et al. [2018] extend the SMACK verifier to work on Rust programs, and KRust
[Wang et al. 2018] is an implementation of Rust’s semantics on the K-framework.

7 CONCLUSION

In this paper we have investigated the problem of automatically translating C programs into safer
Rust programs—that is, Rust programs that improve on the safety guarantees of the original C
programs. First, we conducted an in-depth study into the underlying causes of unsafety in translated
programs and the relative impact of fixing each cause. We find that there is a relatively small set of
well-defined categories for these causes; however, the majority of unsafety in a translated program
is caused by more than one category. This means that fixing any one category will have only a
small impact, and that fixing a majority of unsafety will require addressing multiple categories. We
have ordered the categories by their impact to help determine their relative priorities.

Second, we have described and evaluated a novel technique for automatically removing a par-
ticular category of unsafety: the Lifetime raw pointers. Our technique piggy-backs on the Rust
compiler, and our evaluation shows that it removes 87% of Lifetime raw pointer declarations and
89% of raw pointer dereferences of this category.

This paper presents the first empirical study of unsafety in translated Rust programs (as opposed
to programs originally written in Rust) and also the first technique for automatically removing
causes of unsafety in translated Rust programs. It lays the groundwork for future research into
removing even more unsafety from these programs. That future research will address the other
categories of unsafety outlined in this paper and ultimately extend the project to handle multi-
threaded programs and C++.
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A APPENDIX: RUST’S OWNERSHIP SYSTEM

This appendix serves a short primer to how Rust handles ownership and borrowing. Both of these
features are central to Rust’s memory model, and enable it to statically ensure memory safety in
safe code without resorting to garbage collection at runtime. Given that our work must work with
Rust’s memory model closely, it is necessary to have some understanding of Rust’s memory model
in order to understand the significance of our own work. That said, this appendix is intended only
as a quick introduction; readers curious for more details are directed to the online Rust book for
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basics [Klabnik and Nichols 2018], as well as as a more formal alias-based formulation at [Matsakis
2018].

A.1 Motivation

Rust’s memory model ensures memory safety statically, without resorting to potentially expensive
runtime memory management techniques like garbage collection. In Rust, well-typed programs
are memory-safe by construction. As with a garbage collected language, users explicitly perform
memory allocation, but do not explicitly perform deallocation. Unlike with garbage collection,
the Rust compiler statically inserts routines to deallocate heap-allocated memory when it is no
longer needed. The type system of Rust is designed in such a manner that the compiler statically
knows exactly where these memory deallocations need to be performed. This knowledge of when
to perform deallocation is based around ownership.

A.2 Ownership

By default, data is said to be owned in Rust. For example, consider the following function definition
f, which uses type Vec from the Rust standard library (representing a vector):

1 fn f(v: Vec<i32>) {3}

f is said to take ownership of v. This is indicated by the fact that v is directly of type Vec<i32>.
Whoever owns the data is ultimately responsible for deallocating any heap-allocated data held.
Deallocation implicitly occurs whenever the variable bound to the data falls out of scope. With this
in mind, any heap-allocated data held in v is deallocated immediately after the call to f, as v will
no longer be accessible.

Within a scope, ownership can be transferred from one variable to another. For example, consider
the following code snippet:

fn example () {
let v1 = vec![1, 2, 31; // creates a vector holding 1, 2, 3
let v2 = vi;

’

B W N =

}

In this case, v1 initially holds the underlying vector. Ownership is then transferred to variable v2.
Because ownership is never transferred away from v2, v2 will have all heap-allocated memory
deallocated at example’s termination. Because ownership was transferred away from v1, there is
no similar deallocation performed for v1, beyond typical stack deallocation of v1.

Ownership can also be transferred between scopes. For example, consider the following:

1 fn identity(v: Vec<i32>) =-> Vec<i32> { return v; }

In this case, like the prior f example, identity takes ownership over v. However, because identity
later returns v, it transfers ownership to identity’s caller. Any heap-allocated memory bound to
v then becomes the concern of identity’s caller.

A.3 Borrowing and Lifetimes

While the ownership model unambiguously allows the compiler to safely statically deallocate all
heap-allocated memory, it is nonetheless very restrictive. For example, if you wanted to define a
function that merely printed the contents of a vector, it would need to transfer ownership back to
the caller. This would mean having an unintuitive type signature like:

1 fn print_all(v: Vec<i32>) -> Vec<i32> { ... }
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With this in mind, the more data a function needs to do its job, the more data the very same function
needs to return. There are also negative performance implications of ownership transfer, since
barring compiler optimizations, it entails copying any stack-allocated memory behind a variable.

To address these issues around ownership transfer, Rust also has a concept known as borrowing.
As the name suggests, data can be temporarily borrowed without changing ownership. Data is
borrowed through a reference, which bear similarity to references in other languages. Borrowed
data can be used like owned data, with some restrictions. One important restriction is that borrowed
data cannot outlive the actual data being borrowed. Using C/C++ terminology, Rust must ensure
that there are no dangling pointers to any allocated data.

To ensure that the underlying data being borrowed is always valid, Rust introduces the concept
of a lifetime. Lifetimes are type-level variables which abstractly define how long the underlying
data being borrowed will be in memory. For example, consider the following code:

fn has_lifetime<'a>(v: &'a Vec<i32>) { ... }

Instead of having ownership of v transferred to has_lifetime, this instead borrows the underlying
Vec<i32> for lifetime ’a. Rust will ensure that the underlying Vec<i32> is in memory for the
duration of the call to has_lifetime. Because has_lifetime merely borrows the Vec<i32>, there
is no memory deallocation of v performed; has_lifetime does not own the vector, and so it is not
has_lifetime’s responsibility to deallocate the vector.

Like regular type variables, data structure definitions themselves can take lifetimes, as with:

struct SomeData<'a, 'b> {
first: &'a i32,
second: &'b 132

}

With the above code in mind, Rust will make sure that no allocated instance of SomeData will
outlive anything it borrows. That is, the data referred to by first and second will always be in
memory at least as long as the SomeData data structure itself.

To show this in practice, consider the following example, which is rejected by the Rust compiler:

fn rejected() {
let the_data;
let first_int = 1;
{
let second_int = 2;
the_data = SomeData { first: &first_int, second: &second_int };
}
print! ("{}'', *the_data.second);
3

The above code is rejected by the Rust compiler, with an error message stating that second_int does
not live long enough. To understand why, first understand that each block in Rust corresponds to a
separate lifetime variable. That is, an enclosing scope maps directly to object lifetimes. For speaking
purposes, the outer scope of rejected will be called ’ a, and the inner scope (where second_int is
declared) will be called ’b. With this in mind, the_data has type SomeData<’a, ’b>, and it itself
has lifetime ’ a. However, ’b does not live as long as ’ a. As such, we have attempted to create a data
structure with a lifetime longer than its constituents, which is not permitted. As such, Rust rejects
the program. Thinking in terms of C/C++, this rejection makes sense - second_int is allocated on
the stack and subsequently deallocated after the_data is initialized, so the_data.second would
be a dangling pointer.
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A.3.1 Restrictions. All borrows seen so far are immutable borrows, meaning that the underlying
object cannot be changed through these borrows. Furthermore, the underlying object may not
be changed at all while any immutable borrows are active. Similarly, Rust disallows ownership
transfers while any borrows are active. This can be statically checked at compile time, as shown in
the code below:

struct MyStruct {
first: 132
}
fn involves_borrows<'a>(datum: &'a MyStruct) -> &'a MyStruct {
return datum;
}
fn performs_transfer(x: MyStruct) {}
fn main() {
let x = MyStruct { first: 42 };
let r = involves_borrows (&x);
performs_transfer (x);
print! ("{}", r.first)
}

The above code fails to compile, as the the transfer performed by
performs_transfer is disallowed because reference r still refers to the same data structure. Specif-
ically, Rust tracks that x has an active borrow at the call to performs_transfer, disallowing the
call. As an aside, the subsequent use of r.first is required to get this code to compile, as this
forces the compiler to internally keep the borrow of x around after the call to performs_transfer;
effectively, Rust will permit the existence of a dangling pointer, but not the access of a dangling
pointer.

A.3.2  Immutable and Mutable Borrows. All prior borrow examples are based on immutable borrows,
meaning the underlying object cannot be changed through the borrow. Rust also supports mutable
borrows, which use the mut reserved word, like so:

&'a mut Vec<i32>

The above snippet refers to a mutable borrow of a Vec<i32>, where the underlying vector is in
memory for at least ’ a lifetime.

Mutable borrows work similarly to mutable borrows, with the following twists. With immutable
borrows, the same data may be borrowed multiple times in the same context, as none of the borrows
can change the underlying object. However, with mutable borrows, only one such mutable borrow
may be active at any time. Furthermore, if a mutable borrow is active, all mutation must be done
through the mutable borrow, and no immutable borrows or ownership transfers are permitted.
While restrictive, these requirements prevent data races from occurring - all mutation is very
carefully tracked and made explicit in the types; it is not possible for data to be modified “out from
under you”, as it is in most languages.
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