
String Abstractions for String Verification ⋆

Fang Yu1, Tevfik Bultan2, and Ben Hardekopf2

1 Department of Management Information Systems
National Chengchi University, Taipei, Taiwan

yuf@nccu.edu.tw
2 University of California, Santa Barbara, CA, USA

{bultan, benh}@cs.ucsb.edu

Abstract. Verifying string manipulating programs is a crucial problem in com-
puter security. String operations are used extensively within web applications to
manipulate user input, and their erroneous use is the most common cause of secu-
rity vulnerabilities in web applications. Unfortunately,verifying string manipu-
lating programs is an undecidable problem in general and anyapproximate string
analysis technique has an inherent tension between efficiency and precision. In
this paper we present a set of sound abstractions for stringsand string operations
that allow for both efficient and precise verification of string manipulating pro-
grams. Particularly, we are able to verify properties that involve implicit relations
among string variables. We first describe an abstraction called regular abstrac-
tion which enables us to perform string analysis using multi-track automata as
a symbolic representation. We then introduce two other abstractions—alphabet
abstraction and relation abstraction—that can be used in combination to tune the
analysis precision and efficiency. We show that these abstractions form an ab-
straction lattice that generalizes the string analysis techniques studied previously
in isolation, such as size analysis or non-relational string analysis. Finally, we em-
pirically evaluate the effectiveness of these abstractiontechniques with respect
to several benchmarks and an open source application, demonstrating that our
techniques can improve the performance without loss of accuracy of the analysis
when a suitable abstraction class is selected.

1 Introduction

String manipulation errors are a leading cause of security vulnerabilities. For example,
the top three vulnerabilities in the Open Web Application Security Project (OWASP)’s
top ten list [12] are Cross-Site Scripting, Injection Flaws(e.g., SQL injection), and Ma-
licious File Execution (MFE), all of which occur due to the erroneous sanitization and
manipulation of input strings. This paper focuses on the problem of verifying asser-
tions about a program’s string-related properties, e.g., that a string variable at a given
program point cannot contain a specific set of characters, orthat a string variable must
necessarily be a prefix of some other string variable. These types of assertions can be
used to prove the absence of the vulnerabilities listed above, among others.

⋆ This work is supported by an NSC grant 99-2218-E-004-002-MY3 and NSF grants CCF-
0916112 and CCF-0716095.

2

The string verification problem is undecidable even for simple string manipulat-
ing programs [21]. In this paper we present sound abstraction techniques that enable
us to verify properties of string manipulating programs. Wefirst present theregular ab-
stractionin which values of string variables are represented as multi-track deterministic
finite automata. Multi-track automata read tuples of characters as input instead of only
single characters. Each string variable corresponds to a particular track (i.e., a particular
position in the tuple). This representation enables relational string analysis [21], mean-
ing that it can be used to verify assertions that depend on relationships among the string
variables.

Although we use a symbolic automata representation in orderto improve the scal-
ability of our analysis, the size of a multi-track automatonrepresenting a given string
relation can be exponentially larger than that of traditional single-track automata repre-
senting the (less-precise) non-relational projections ofthat same relation. For example,
the 2-track automaton for the relationX1 = cX2 (whereX1 andX2 are string variables)
is exponential in the length ofc, whereas the projection to the single-track automaton
for X2 (which isΣ∗) is constant-size and the projection forX1 (which iscΣ∗) is linear
in the length ofc. Moreover, the size of the alphabet for multi-track automata increases
exponentially with the number of program variables.

In order to improve the scalability of our approach, we propose two additional string
abstractions: 1)Relation abstractionselects sets of string variables to analyze relation-
ally and analyzes the remaining string variables independently. The intent is to detect
relationships only for the string variables whose relations are relevant for the assertions
being verified. 2)Alphabet abstractionselects a subset of alphabet characters to ana-
lyze distinctly and merges the remaining alphabet characters into a special symbol. The
intent is to track only those characters that are relevant for the assertions being verified.

These two abstractions are parameterized by the choices of which program vari-
ables are analyzed in relation to each other versus being analyzed separately and which
characters are merged versus being kept distinct; thus, they actually form a family of
string abstractions. We show that this family forms an abstraction lattice that general-
izes previously existing string analyses into a single, cohesive framework that can be
tuned to provide various trade-offs between precision and performance. In addition, we
propose a set of heuristics for choosing useful points in this abstraction lattice based on
the program being analyzed. Finally, we empirically show that these abstractions meet
our goal of increasing the scalability of the relational string analysis while retaining the
precision required to verify realistic programs.

2 A Motivating Example

In this section we give a motivating example that shows the need for relational string
analysis based on the regular abstraction as well as the usefulness of the relation and
alphabet abstractions proposed in this paper. Consider thesimple PHP script shown in
Figure 1. The script starts with assigning the user account and password provided in
GET array to two string variables$usr and$passwd in line 2 and line 3, respectively.
Then, it assigns the result of the concatenation of$usr and$passwd to another string
variable$key in line 4. Theecho statement in line 6 is a sink statement. Since it uses

3

1 <?php
2 $usr = $_GET["usr"];
3 $passwd = $_GET["passwd"];
4 $key = $usr . $passwd;
5 if($key == "admin1234")
6 echo "You are login as " . $usr ;
7 ?>

Fig. 1.A Simple Example

data directly from a user input, a taint analysis will identify this as a Cross Site Scripting
(XSS) vulnerability. That is, a malicious user may provide an input that contains the
string constant<script and execute a command leading to an XSS attack. However,
the assignment in line 4 states that$usr is the prefix of$key. The branch condition in
line 5 enforces the value of$key to beadmin1234 and the value of$usr to be a prefix
of admin1234. This ensures that theecho statement in line 6 cannot take any string
that contains the string constant<script as its input. Hence, this simple script is not
vulnerable and the taint analysis raises a false alarm.

Non-relational string analyses techniques (e.g., [5,20])will also raise a false alarm
for this simple script. Such an analysis will first observe that in lines 1 and 2 variables
$usr and$passwd can have any string value since they are assigned user input,and
then conclude that in line 3,$key can be any string. Note that the relationship among
$key, $usr and$passwd cannotbe tracked in non-relational string analysis. Although
such an analysis can conclude that the value of$key isadmin1234 in line 6, it will still
report that$usr can take any string value in line 6. Let the attack pattern forthe XSS
be specified as the following regular expression:Σ∗ <script Σ∗ whereΣ denotes the
alphabet which is the set of all ASCII symbols. A non-relational string analysis will
conclude that theecho statement in line 6 is vulnerable, since theecho statement can
take a string value that matches the attack pattern if$usr can take any string value in
line 6.

In our string analysis we first use aregular abstractionto represent possible values
of string variables in a program using multi-track automata[21]. To represent values of
n string variables, we use ann-track automaton with an alphabet of size|Σ|n. Hence, as
the number of variables increases, relational analysis becomes intractable. We propose
two additional abstraction techniques to improve the scalability of the relational string
analysis. We use therelation abstractionto reducen, and thealphabet abstractionto
reduce|Σ|, while preserving sufficient precision to prove the required assertions.

The relation abstraction chooses subsets of string variables to track relationally
while tracking the remaining variables independently. Forthe example shown in Fig-
ure 1, a relational analysis that tracks$usr and$key together but$passwd indepen-
dently is sufficient to prevent the false alarm at line 6. The two track automaton for
$usr and$key is able to keep the prefix relation between$usr and$key at line 4. At
line 6 while$key is restricted toadmin1234, $usr is a strict prefix ofadmin1234,
and the relational analysis is able to conclude that theecho statement cannot take a
value that matches the attack pattern.

4

The alphabet abstraction keeps a subset of the alphabet symbols distinct and merges
the remaining symbols to a single abstract symbol. For example, the program in Figure 1
can be analyzed more efficiently by keeping only the character < distinct and merging
all other ASCII symbols into an abstract symbol⋆, thus shrinking the alphabet from 256
characters to 2. That is, we can use one bit (instead of eight bits) plus some reserved
characters to encode each track of the multi-track automaton. Under this encoding, the
analysis can conclude that at line 6,$usr is a string with length 9 that only contains
⋆, and theecho statement cannot take any string value that matches the attack pattern
(⋆∗ < ⋆ ⋆ ⋆ ⋆ ⋆(< |⋆)∗ in this case).

The relation and alphabet abstractions can be used only withregular abstraction, or
composed together. In the example above, by combining relation abstraction and alpha-
bet abstraction, we are able to decrease the alphabet size ofthe multi-track automaton,
i.e., |Σ|n, from 2563 symbols to22 = 4 symbols, and still keep sufficient information
to prevent the false alarm.

On the other hand, instead of tracing relations among variables, one may simply
sanitize user inputs to prevent potential vulnerabilities, e.g., using the following state-
ment at line 2:

$usr = str_replace("<", "", $_GET["usr"]);

The expressionGET["usr"] returns the string entered by the user, and thestr replace

call replaces all< with the empty string. In this case, we can adopt a coarser abstrac-
tion for our string analysis. It is sufficient to use single-track automata (abstract away
all relations among variables) with abstract alphabet{<, ⋆} to conclude that theecho
statement cannot take any string value that matches the attack pattern.

3 String Abstractions

In this section we first present the regular abstraction which allows us to analyze string
manipulating programs using multi-track automata as a symbolic representation. Then
we show that the relation and alphabet abstractions can be composed with the regular
abstraction (and with each other) to obtain a family of abstractions.

3.1 Regular Abstraction

The regular abstraction maps a set of string tuples to a set ofstring tuples accepted
by a multi-track automaton. This enables us to use deterministic finite state automata
(DFAs) as a symbolic representation during string analysis. A multi-track automaton
(or multi-track DFA) is a DFA that transitions on tuples of characters rather than single
characters. For a given alphabetΣ let Σλ = Σ ∪{λ}, whereλ /∈ Σ is a special padding
character. Ann-track alphabet is defined asΣn = Σλ × · · · × Σλ (n times). A track
corresponds to a particular position in then-tuple. A multi-track DFA isaligned iff
for all wordsw accepted by the DFA,w ∈ Σ∗λ∗ (i.e., all padding is at the end of
the word). Using aligned multi-track automata gives us a representation that is closed
under intersection and can be converted to a canonical form after determinization and
minimization. In the following, multi-track DFAs are assumed to be aligned unless
explicitly stated otherwise.

5

The statements of a string manipulating program can be represented as word equa-
tions. Aword equationis an equality relation between two terms, each of which is a fi-
nite concatenation of string variables and string constants. Regular abstraction abstracts
a given program by mapping the word-equations representingthe program statements
to multi-track DFA. Since word equations can not be precisely represented using multi-
track automata, we use the results presented in [21] to construct a sound abstraction of
the given program (i.e., in the abstracted program the set ofvalues that a variable can
take is a superset of the possible values that a variable can take in the concrete pro-
gram). Note that, since branch conditions can contain negated terms, we need to be able
to construct both an over- and an under-approximation of a given word equation. We
construct multi-track automata that precisely represent word equations when possible,
and either over- or under-approximate the word equations (as desired) otherwise.

We define a functionCONSTRUCT(exp:word equation,b:bool) that takes a word
equation as input and returns a corresponding multi-track DFA, if necessary either
over-approximating (ifb = +) or under-approximating (ifb = −). We use theCON-
STRUCT function to soundly approximate all word equationsand their boolean combi-
nations, including existentially-quantified word equations. The boolean operations con-
junction, disjunction, and negation on word equations are handled using intersection,
disjunction, and complementation of the corresponding multi-track DFAs, respectively;
existentially-quantified word equations are handled usinghomomorphisms (by project-
ing the track that corresponds to the quantified variable).

Given an assignment statementstmt of the formX := exp we first represent it as
a word equation of the formX ′ = exp whereexp is an expression on the current state
variables, andX ′ denotes the next state variables. Then we abstractstmt by construct-
ing a multi-track automatonMstmt that over-approximates the corresponding word
equation as followsMstmt = CONSTRUCT(X ′ = exp, +). A branch condition speci-
fied as an expressionexp is similarly abstracted usingCONSTRUCT(X ′ = X ∧ exp, +)
for the then branch andCONSTRUCT(X ′ = X ∧ ¬exp, +) for the else branch. The re-
sult of the regular abstraction consists of the control flow graph of the original program
where each statement in the control flow graph is associated with a multi-track DFA
that over-approximates the behavior of the corresponding statement.

The abstract domain that results from the regular abstraction is defined as a lattice
on multi-track automata over an alphabetΣn. We denote this automata lattice asLM =
(MΣn ,⊑,⊔,⊓,⊥,⊤), whereMΣn is the set of multi-track automata over the alphabet
Σn. For M1, M2 ∈ MΣn , M1 ⊑ M2 iff L(M1) ⊆ L(M2). The bottom element is
defined asL(⊥) = ∅ and the top element is defined asL(⊤) = (Σn)∗. There may
be multiple automata that accept the same language; the lattice treats these automata
as equivalent. If we use minimized DFAs then there is a uniqueautomaton for each
point in the lattice up to isomorphism. All of the multi-track automata in this lattice are
aligned [21] and hence all operations take aligned automataas input and return aligned
automata as output.

The join operator cannot be defined simply as language union since the family of
regular languages is not closed under infinite union. Instead, we use the widening op-
erator from [2] as the join operator whereM1 ⊔ M2 = M1∇M2. The meet operator

6

can be defined from the join operator using language complement: let ¬M denote an
automaton such thatL(¬M) = Σ∗ \ L(M); thenM1 ⊓ M2 = ¬(¬M1∇¬M2).

Note that a similar automata lattice can also be defined for single-track automata
over a single-track alphabetΣ whereLM = (MΣ,⊑,⊔,⊓,⊥,⊤).

Fixpoint Computation for Forward ReachabilityThe relational string analysis corre-
sponds to a least-fixpoint computation over the multi-trackautomata lattice. Each pro-
gram point is associated with a multi-track DFA whose trackscorrespond to string
variables and the multi-track DFA accepts the string-tuples that correspond to possi-
ble values that string variables can take at that particularprogram point. In order to be
able to handle large alphabets of the multi-track DFA, we usethe symbolic DFA rep-
resentation provided by the MONA automata package [9]. In this symbolic automata
representation the transition relations of the DFA are represented as Multi-terminal Bi-
nary Decision Diagrams (MBDDs).

We use a standard work-queue algorithm to compute the fixpoint. For a program
statementstmtthat is abstracted as the multi-track automatonMstmt the post-image is
computed as:

POST(M, stmt) ≡ (∃X.M ∩ Mstmt)[X
′ 7→ X]

In other words, we take the intersection of the multi-track DFA that represents the state-
ment with the multi-track DFA representing the current states (M), apply quantifier
elimination on the current state variablesX (by projection), and rename the next state
variablesX ′ asX (by arranging the indices in the MBDD representation) to obtain the
post-image DFA.

Since we use the widening operator as the join operator during the fixpoint computa-
tion, the analysis is guaranteed to terminate. During the analysis, we report the assertion
violations as they are discovered. The analysis is sound, but it is incomplete due to the
following approximations: (1) abstraction of word equations as multi-track DFAs, and
(2) use of the widening operator which over approximates thelanguage union.

3.2 Alphabet Abstraction

In this section we formally define the alphabet abstraction.This abstraction targets the
values taken on by string variables, mapping multiple alphabet symbols to a single ab-
stract symbol. For example, consider a string variable thatcan take the value{ab, abc}.
Abstracting the symbolsb andc yields the value{a⋆, a ⋆ ⋆}, where⋆ stands for both
b andc. The concretization of this abstract value would yield the value{ab, ac, abc,
abb, acb, acc}. At the extreme this abstraction can abstract out all alphabets symbols
(in the above example, this would yield the abstract value{⋆⋆, ⋆ ⋆ ⋆}). In this case the
only information retained from the original value is the length of the strings; all infor-
mation about the content of the strings is lost. This abstraction is still useful in checking
properties related to string length—we will return to this point in Section 3.4.

The alphabet abstraction is parameterized by the choice of which symbols to ab-
stract, hence it forms a family of abstractions. This familyforms an abstraction lattice
LΣ called thealphabet lattice(distinct from the automata lattice introduced earlier).
Let Σ, a finite alphabet, be the concrete alphabet, and⋆ 6∈ Σ be a special symbol

7

to represent characters that are abstracted away. An abstract alphabet ofΣ is defined
as Σ′ ∪ {⋆}, whereΣ′ ⊆ Σ. The abstract alphabets ofΣ form a complete lattice
LΣ = (P(Σ ∪ {⋆}),⊑Σ,∪,∩, σ⊥, σ⊤) where the bottom elementσ⊥ is Σ ∪ {⋆}, the
top elementσ⊤ is {⋆}, and the join and meet operations correspond to set intersection
and union, respectively. The abstractionσ⊤ corresponds to mapping all the symbols in
the concrete alphabet to a single symbol, whereasσ⊥ corresponds to no abstraction at
all. The partial order ofLΣ is defined as follows. Letσ1, σ2 be two elements inLΣ ,

σ1 ⊑Σ σ2, if σ2 ⊆ σ1, and σ1 ⊏Σ σ2, if σ1 ⊑Σ σ2 andσ1 6= σ2.

Let σ1 ⊑Σ σ2. We define the representation function for alphabet abstraction as
follows: βσ1,σ2

: Σ∗ → Σ∗ whereβσ1,σ2
(w) = {w′ | |w′| = |w|, ∀i 1 ≤ i ≤

|w|.(w(i) ∈ σ2 ⇒ w′(i) = w(i)) ∧ (w(i) 6∈ σ2 ⇒ w′(i) = ⋆)}. The representation
function simply maps the symbols that we wish to abstract to the abstract symbol⋆, and
maps the rest of the symbols to themselves.

Since the symbolic analysis we defined in Section 3.1 uses automata as a symbolic
representation, we have to determine how to apply the alphabet abstraction to automata.
We define the abstraction functionασ1,σ2

on automata using the representation function
βσ1,σ2

as follows: LetM be a single track DFA overσ1; thenασ1,σ2
(M) = M ′ where

M ′ is a single track DFA overσ2 such thatL(M ′) = {w | ∃w′ ∈ L(M).βσ1,σ2
(w′) =

w}. Note that there may be multiple automataM ′ that satisfies this constraint. However,
since we use minimized multi-track DFAs they will all be equivalent. We define the
concretization functionγσ2,σ1

similarly: Let M be a single track DFA overσ2; then
γσ1,σ2

(M) = M ′ whereM ′ is a single track DFA overσ1 such thatL(M ′) = {w |
∃w′ ∈ L(M).βσ1,σ2

(w) = w′}.
The definitions we give above are not constructive. We give a constructive definition

of the abstraction and concretization functions by first defining an alphabet-abstraction-
transducer that maps symbols that we wish to abstract to the abstract symbol⋆, and
maps the rest of the symbols to themselves.

An alphabet-abstraction-transducer overσ1 and σ2 is a 2-track DFAMσ1,σ2
=

〈Q, σ1 × σ2, δ, q0, F 〉, where

– Q = {q0, sink}, F = {q0}, and
– ∀a ∈ σ2.δ(q0, (a, a)) = q0,
– ∀a ∈ σ1 \ σ2.δ(q0, (a, ⋆)) = q0.

Now, using the alphabet-abstraction-transducer, we can compute the abstraction
of a DFA as a post-image computation, and we can compute the concretization of
DFA as a pre-image computation. LetM be a single track DFA overσ1 with track
X . Mσ1,σ2

(X, X ′) denotes the alphabet transducer overσ1 andσ2 whereX andX ′

correspond to the input and output tracks, respectively. Wedefine the abstraction and
concretization functions on automata as:

– ασ1,σ2
(M) ≡ (∃X.M ∩ Mσ1,σ2

(X, X ′))[X ′ 7→ X], and
– γσ1,σ2

(M) ≡ ∃X ′.(M [X 7→ X ′] ∩ Mσ1,σ2
(X, X ′)).

8

The definition can be extended to multi-track DFAs. LetM be a multi-track DFA
overσn

1 associated with{Xi | 1 ≤ i ≤ n}, ασn

1
,σn

2
(M) returns a multi-track DFA over

σn
2 . On the other hand, whileM is a multi-track DFA overσn

2 , γσn

1
,σn

2
(M) returns a

multi-track DFA overσn
1 . We useMσn

1
,σn

2
to denote the extension of the alphabet trans-

ducer to multi-track alphabet, where we addδ(q0, (λ, λ)) = q0 to Mσn

1
,σn

2
to deal with

the padding symbolλ and we useMσn

1
,σn

2
(Xi, X

′
i) to denote the alphabet transducer

associated with tracksXi andX ′
i. The abstraction and concretization of a multi-track

DFA M is done track by track as follows:

– ασn

1
,σn

2
(M) ≡ ∀Xi.(∃Xi.M ∩ Mσn

1
,σn

2
(Xi, X

′
i))[X

′
i 7→ Xi], and

– γσn

1
,σn

2
(M) ≡ ∀Xi.(∃X ′

i.M [Xi 7→ X ′
i] ∩ Mσn

1
,σn

2
(Xi, X

′
i)).

The abstraction latticeLΣ defines a family of Galois connections between the au-
tomata latticesLM . Each elementσn in the abstraction latticeLΣn is associated with an
automata latticeLσn corresponding to multi-track automata with the alphabetσn. For
any pair of elements in the abstraction latticeσn

1 , σn
2 ∈ LΣn , if σn

1 ⊏Σ σn
2 , then we can

define a Galois connection between the corresponding automata latticesLσn

1
andLσn

2

using the abstraction and concretization functionsασn

1
,σn

2
andγσn

1
,σn

2
. We formalize

this with the following property:

For anyΣn, andσn
1 , σn

2 ∈ LΣn , if σn
1 ⊏Σ σn

2 , the functionsασn

1
,σn

2
andγσn

1
,σn

2
define

a Galois connection between the latticesLσn

1
andLσn

2
where for anyM1 ∈ Lσn

1
and

M2 ∈ Lσn

2
:

ασn

1
,σn

2
(M1) ⊑ M2 ⇔ M1 ⊑ γσn

1
,σn

2
(M2)

3.3 Relation Abstraction

In this section we formally define the relation abstraction.This abstraction targets the
relations between string variables. The abstraction determines the sets of variables that
will be analyzed in relation to each other; for each such set the analysis computes a
multi-track automaton for each program point such that eachtrack of the automaton
corresponds to one variable in that set. In the most abstractcase no relations are tracked
at all—there is a separate single-track automaton for each variable and the analysis is
completely non-relational. On the other hand, in the most precise case we have one
single multi-track automaton for each program point.

Let X = {X1, . . .Xn} be a finite set of variables. Letχ ⊆ 2X where∅ 6∈ χ. We
sayχ defines a relation ofX if (1) for any x,x′ ∈ χ, x 6⊆ x

′, and (2)
⋃

x∈χ x = X.

The set ofχ that defines the relations ofX form a complete lattice, denoted asLX .

– The bottom of the abstraction lattice, denoted asχ⊥, is {{X1, X2, . . . , Xn}}. This
corresponds to the most precise case where, for each programpoint, a single multi-
track automaton is used to represent the set of values for allstring variables where
each string variable corresponds to one track. This is the representation used in the
symbolic reachability analysis described in Section 3.1.

9

– The top of the abstraction lattice, denoted asχ⊤, is{{X1}, {X2}, {X3}, . . . , {Xn}}.
This corresponds to the most coarse abstraction where, for each program point,n
single-track automata are used and each automaton represents the set of values for
a single string variable. This approach has been used in someearlier work such
as [1,20].

The partial order of the abstraction latticeLX is defined as follows: Letχ1, χ2 be
two elements inLX ,

– χ1 ⊑X χ2, if for anyx ∈ χ2, there existsx′ ∈ χ1 such thatx ⊆ x
′.

– χ1 ⊏X χ2 if χ1 ⊑X χ2 andχ1 6= χ2.

The symbolic reachability analysis discussed in Section 3.1 can be generalized to
a symbolic reachability analysis that works for each abstraction level in the abstraction
latticeLX . To conduct symbolic reachability analysis for the relation abstractionχ ∈
LX , we store|χ| multi-track automata for each program point, where for eachx ∈ χ,
we have a|x|-track DFA, denoted asMx, where each track is associated with a variable
in x.

In order to define the abstraction and the concretization functions, we define the
following projection and extension operations on automata. Forx′ ⊆ x, the projection
of Mx to x

′, denoted asMx ↓x
′ , is defined as the|x′|-track DFA that accepts{w′ | w ∈

L(Mx), ∀Xi ∈ x
′.w′[i] = w[i])}. Similarly,x′ ⊆ x, the extension ofMx

′ tox, denoted
asMx

′ ↑x, is defined as the|x|-track DFA that accepts{w | w′ ∈ L(Mx
′), ∀Xi ∈

x
′.w[i] = w′[i])}.

Let Mχ = {Mx | x ∈ χ} be a set of DFAs for the relationχ. The set of string
values represented byMχ is defined as:L(Mχ) = L(

⋂
x∈χ Mx ↑xu

), wherexu =
{X1, X2, . . . , Xn}. I.e., we extend the language of every automaton inMχ to all string
variables and then take their intersection.

Now, let us define the abstraction and concretization functions for the relation ab-
straction (which take a set of multi-track automata as inputand return a set of multi-
track automata as output).

Let χ1 ⊏X χ2; thenαχ1,χ2
(Mχ1

) returns a set of DFAs{Mx
′ | x′ ∈ χ2}, where

for eachx
′ ∈ χ2, Mx

′ = (
⋂

x∈χ1,x′∩x 6=∅ Mx ↑xu
) ↓x

′ , wherexu = {Xi | Xi ∈
x,x ∈ χ1,x

′ ∩ x 6= ∅}.
γχ1,χ2

(Mχ2
) returns a set of DFAs{Mx | x ∈ χ1}, where for eachx ∈ χ1, Mx =

(
⋂

x
′∈χ2,x′∩x 6=∅(Mx

′ ↑xu
)) ↓x, wherexu = {Xi | Xi ∈ x

′,x′ ∈ χ2,x
′ ∩ x 6= ∅}.

Similar to the alphabet abstraction, the relation abstraction lattice LX also de-
fines a family of Galois connections. Each element of the relation abstraction lattice
corresponds to a lattice on sets of automata. For eachχ ∈ LX we define a lattice
Lχ = (Mχ,⊑,⊔,⊓,⊥,⊤). Given two sets of automataMχ,M′

χ ∈ Mχ, Mχ ⊑ M
′
χ

if and only if L(Mχ) ⊆ L(M′
χ). The bottom element is defined asL(⊥) = ∅ and the

top element is defined asL(⊤) = (Σn)∗. The join operator is defined as:Mχ ⊔M
′
χ =

{Mx∇M ′
x

| x ∈ χ, Mx ∈ Mχ, M ′
x

∈ M
′
χ} and the meet operator is defined as:

Mχ ⊓ M
′
χ = {¬(¬Mx∇¬M ′

x
) | x ∈ χ, Mx ∈ Mχ, M ′

x
∈ M

′
χ}.

For any pair of elements in the relation abstraction latticeχ1, χ2 ∈ LX , if χ1 ⊏X

χ2, then the abstraction and concretization functionsαχ1,χ2
andγχ1,χ2

define a Galois
connection betweenLχ1

andLχ2
. We formalize this with the following property:

10

($N , 1N)

($N , 1O)($O , 1N)

($O , 1O)

size
analysis

relational
size analysis

string
analysis

relational
string analysis

. . .

Fig. 2.Some abstractions from the abstraction lattice and corresponding analyses

For any χ1, χ2 ∈ LX , if χ1 ⊏X χ2, then the functionsαχ1,χ2
and γχ1,χ2

define a
Galois connection betweenLχ1

andLχ2
where for anyMχ1

∈ Lχ1
andM

′
χ2

∈ Lχ2
:

αχ1,χ2
(Mχ1

) ⊑ M
′
χ2

⇔ Mχ1
⊑ γσn

1
,σn

2
(M′

χ2
)

3.4 Composing Abstractions

As shown in the two previous sections, both alphabet and relation abstractions form
abstraction lattices which allow different levels of abstraction. Combining these ab-
stractions leads to a product lattice where each point in this lattice corresponds to the
combination of a particular alphabet abstraction with a particular relation abstraction.
This creates an even larger set of Galois connections, one for each possible combination
of alphabet and relation abstractions. GivenΣ andX = {X1, . . . , Xn}, we define a
point in this product lattice as anabstraction classwhich is a pair(χ, σ) whereχ ∈ LX

andσ ∈ LΣ . The abstraction classes ofX andΣ also form a complete lattice, of which
the partial order is defined as:(χ1, σ1) ⊑ (χ2, σ2) if χ1 ⊑ χ2 andσ1 ⊑ σ2.

GivenΣ andX = {X1, . . . , Xn}, we can select any abstraction class in the prod-
uct lattice during our analysis. The selected abstraction class(χ, σ) determines the pre-
cision and efficiency of our analysis. If we select the abstraction class(χ⊥, σ⊥), we
conduct our most precise relational string analysis. The relations amongX will be kept
using onen-track DFA at each program point. If we select(χ⊤, σ⊤), we only keep
track of thelengthof each string variable individually. Although we abstractaway al-
most all string relations and contents in this case, this kind of path-sensitive (w.r.t length
conditions on a single variable) size analysis can be used todetect buffer overflow vul-
nerabilities [6, 15]. If we select(χ⊥, σ⊤), then we will be conducting relational size
analysis. Finally, earlier string analysis techniques that use DFA, such as [1,20], corre-
spond to the abstraction class(χ⊤, σ⊥), where multiple single-track DFAs overΣ are
used to encode reachable states. As shown in [1, 17, 20], thistype of analysis is useful
for detecting XSS and SQLCI vulnerabilities.

Figure 2 summarizes the different types of abstractions that can be obtained using
our abstraction framework. The alphabet and relation abstractions can be seen as two
knobs that determine the level of the precision of our stringanalysis. The alphabet
abstraction knob determines how much of the string content is abstracted away. In the

11

limit, the only information left about the string values is their lengths. On the other
hand, the relation abstraction knob determines which set ofvariables should be analyzed
in relation to each other. In the limit, all values are projected to individual variables.
Different abstraction classes can be useful in different cases. An important question
is how to choose aproper abstraction class for a given verification problem; this is
addressed in the next section.

3.5 Heuristics and Refinement for Abstraction Selection

Since the space of total possible abstractions using the relation and alphabet abstrac-
tions defined above is very large, we must have some means to decide which specific
abstractions to employ in order to prove a given property. Our choice should be as ab-
stract as possible (for efficiency) while remaining preciseenough to prove the property
in question. In this section we propose a set of heuristics for making this decision.

The intuition behind these heuristics is to let the propertyunder question guide our
choice of abstraction. Consider the set of string variablesXi that appear in the assertion
of a property. LetG be the dependence graph forXi generated from the program being
verified. Finally, letX be the set of string variables appearing inG andC be the set
of characters used in any string constants that appear inG or in the assertion itself.
It is the characters inC and the relations between the variables inX that are most
relevant for proving the given property, and therefore these relations and characters
should be preserved by the abstraction—the remaining variables and characters can be
safely abstracted away without jeopardizing the verification.

In choosing the alphabet abstraction, our heuristic keeps distinct all characters ap-
pearing inC ⊆ C and merges all remaining characters of the alphabet together into the
special character⋆. Initially, C is the set of characters that appear in the assertion itself.
C can be iteratively refined by adding selected characters inC.

In choosing the relation abstraction, it is possible to simply group all variables in
X together and track them relationally while tracking all other variables independently,
but this choice might be more precise than necessary. Consider a hypothetical property
(X1 = X2 ∧ X3 = X4). It is not necessary to track the relations betweenX1 and
either ofX3 or X4 (and similarly forX2)—it is sufficient to track the relations between
X1 andX2 and separately the relations betweenX2 andX3. Therefore our heuristic
partitionsX into distinct groups such that the variables within each group are tracked
relationally with each other. To partitionX, our heuristic first groups together variables
that appear in the same word equation in the property being verified (e.g.,X1 with X2

andX3 with X4). The partition can be iteratively refined by using the dependency graph
G to merge groups containing variables that depend on each other.

This heuristic can also be extended to take into account pathsensitivity. Letφ be
the path condition for the assertion (or the sink statement)andXφ denote the set of
string variables appearing inφ. We first extend the partition base fromX to X ∪ Xφ.
Initially, each variable forms an individual group by itself. The partition is then refined
by merging these individual groups with groups that containvariables that these new
variables depend on. For instance, for the motivating example shown in Figure 1, we
haveX = {$usr} andXφ = {$key}. The initial partition is{{$usr}, {$key}}, and

12

the refined partition is{{$usr, $key}} which enables$usr and$key to be tracked
relationally.

3.6 Handling Complex String Operations

We extend our analysis to other complex string operations that have been previously
defined using single-track automata [20, 22], e.g., replacement, prefix, and suffix. We
first extract the set of values for each variables from the multi-track DFA Mχ as a
single track DFA (using projection), then compute the result of the string operation
using these single-track DFAs. The post image ofMχ can then be computed using the
resulting DFAs.

We must modify these operations to ensure the soundness of the alphabet abstrac-
tion. Consider REPLACE(M1, M2, M3) [20], which returns the DFA accepting
{w1c1w2c2 . . . wkckwk+1 | k > 0, w1x1w2x2 . . . wkxkwk+1 ∈ L(M1), ∀i, xi ∈
L(M2), wi does not contain any substring accepted byM2, ci ∈ L(M3)}. As an in-
stance, letL(M1) = {ab}, L(M2) = {c}, L(M3) = {a}. REPLACE(M1, M2, M3)
will return M that accepts{ab}, the same asM1, since there is no match appearing
in any accepted string. However, let{a, ⋆} be the abstraction alphabet. After applying
the alphabet abstraction, we haveL(M ′

1) = {a⋆}, L(M ′
2) = {⋆}, L(M ′

3) = {a}, and
REPLACE(M ′

1, M ′
2, M ′

3) will return M ′ that accepts{aa} instead. SinceL(ασ(M)) =
{a⋆} 6⊆ L(M ′), the result in the concrete domain is not included in the abstract domain
after abstraction. It is unsound applying the replace operation directly.

AssumeM1, M2, M3 using the same abstraction alphabetσ. To ensure soundness
we returnασ(REPLACE(γσ(M1), γσ(M2), γσ(M3)) if L(M1) 6⊆ L(M⋆̄) andL(M2) 6⊆
L(M⋆̄), so that all possible results in the concrete domain are included in the abstract
domain after abstraction. We return REPLACE(M1, M2, M3), otherwise.

4 Implementation and Experiments

We have incorporated alphabet abstraction to Stranger [18]which is an automata-based
string analysis tool for PHP programs. However, Stranger atthis point performs string
analysis on dependency graphs and is limited to non-relational analysis, i.e., the bottom
of the relation abstraction lattice. In order to implement our relational string analysis
we extended the symbolic string analysis library that Stranger uses to support (abstract)
relational analysis with multi-track automata. We compiled the extended Stranger string
analysis library separate from the Stranger front-end to implement the relational string
analysis. To evaluate the proposed relation abstraction, we implemented the relational
analysis by directly calling the extended Stranger string analysis library functions.

We ran two experiments. In the first experiment we used two sets of benchmarks: 1)
Malicious File Execution (MFE) benchmarks, and 2) Cross-Site Scripting (XSS) bench-
marks. These benchmarks come from five open source PHP applications. We first used
the Stranger front-end to conduct taint analysis on these PHP applications. Stranger
taint-analyzer identified the tainted sinks (i.e., sensitive program points that might be
vulnerable) for each type of vulnerability and generated the dependency graphs for
these potentially vulnerable program segments. We then implemented the relational

13

string analysis for several of these potentially vulnerable program segments by using
the extended Stranger string analysis library functions. We implemented the relational
string analysis for several abstraction classes to evaluate the effectiveness of the pro-
posed abstractions.

In the second experiment we evaluated the alphabet abstraction by directly using
Stranger (that we extended with alphabet abstraction) on anopen source web applica-
tion, called Schoolmate. For this application we looked forXSS (Cross-Site Scripting)
vulnerabilities and conducted the string analysis both with and without alphabet abstrac-
tion and compared the results. Both experiments were conducted on the Linux 2.6.35
machine equipped with Intel Pentium Dual CPU 2.80 GHz and memory 2.9GB. The
applications used in our experiments are available at:
http://soslab.nccu.edu.tw/applications.

MFE benchmarks.This set of benchmarks demonstrates the usefulness of the rela-
tional analysis as well as the utility of our relation abstraction. We used 5 benchmarks:

M1: PBLguestbook-1.32, pblguestbook.php (536)M2: MyEasyMarket-4.1, prod.php (94)
M3: MyEasyMarket-4.1, prod.php (189) M4: php-fusion-6.01, dbbackup.php (111)
M5: php-fusion-6.01, forumsprune.php (28)

Each benchmark is extracted from an open source web application as described
above and contains a program point that executes a file operation (include, fopen, etc)
whose arguments may be influenced by external inputs. For example,M1 corresponds
to the program point at line 536 in pblguestbook.php distributed in the application
PBLguestbook-1.32. Given an abstraction class and a benchmark, we implemented
the corresponding string analysis using the extended Stranger string manipulation li-
brary. Our analysis constructs a multi-track DFA for each program point that over-
approximates the set of strings that form the arguments. At the end of the analysis these
DFAs are intersected with a multi-track DFA that characterizes the vulnerable strings
that expose the program to MFE attacks. We report an error if the intersection is non-
empty. None of the MFE benchmarks we analyzed contained an actual vulnerability.
The MFE vulnerabilities correspond to scenarios such as a user accessing a file in an-
other user’s directory. Such vulnerabilities depend on therelation between two string
values (for example, the user name and the directory name), hence an analysis that does
not track the relations between string variables would raise false alarms.

XSS benchmarks.This set of benchmarks (again extracted from open source webap-
plications) demonstrates the utility of the alphabet abstraction. We use 3 benchmarks:

S1: MyEasyMarket-4.1, trans.php (218)S2: Aphpkb-0.71, saa.php(87)
S3: BloggIT 1.0, admin.php (23)

To identify XSS attacks we use a predetermined set of attack patterns specified
as a regular language. These attack patterns represent strings that potentially make a
program vulnerable to XSS attacks. Again, given an abstraction class and a benchmark,
we implemented the corresponding string analysis using theextended Stranger string
manipulation library. Our analysis constructs multi-track DFAs to over-approximate the
set of possible strings values at sinks and intersects theseDFAs with the attack patterns

14

to detect potential vulnerabilities. All three benchmarkswe analyzed were vulnerable.
We modified the benchmarks to fix these vulnerabilities and create three new versions
(S1’, S2’, and S3’) that are secure against XSS attacks.

Experimental Results.The results for the MFE benchmarks are summarized in Table 1.
All DFAs are symbolically encoded using MBDDs (where MBDDs are used to repre-
sent the transition relation of the DFA). The column labeled”state” shows the number
of states of the DFA while the column labeled ”bdd” shows the number of nodes in the
MBDD that encodes the transition relation of the DFA (i.e., it corresponds to the size of
the transition relation of the DFA). Note that the transition relation size decreases when
we use a coarser alphabet abstraction. However, using a coarser alphabet may induce
nondeterministic edges, and as shown in Table 1, in some cases, the number of states
may increase after determinization and minimization.

The first set of columns use the abstraction(χ⊤, σ⊥), i.e., a completely non-relational
analysis using a full alphabet (similar to the analyses proposed in [18, 20]). This level
of abstraction fails to prove the desired properties and raise false alarms, demonstrating
the importance of a relational analysis. The next set of columns uses the abstraction
(χ, σ⊥), using our heuristic to track a subset of variables relationally. This level of ab-
straction is able to prove all of the desired properties, demonstrating the utility of both
the relational analysis and of our heuristic. Finally, the last set of columns uses the
abstraction(χ, σ), using our heuristics for both relation and alphabet abstraction. This
level of abstraction is also able to verify all the desired properties, and does so with
even better time and memory performance than the previous level of abstraction.

The results for the XSS benchmarks are summarized in Table 2.The first three
rows show results for the unmodified benchmarks. Since our analysis is sound and all
three benchmarks are vulnerable to XSS attacks, we cannot verify the desired proper-
ties regardless of the abstractions used. The last three rows show results for the modified
benchmarks whose vulnerabilities have been patched, and therefore are secure. The first
set of columns uses the abstraction(χ⊤, σ⊥), i.e., a completely non-relational analysis
using a full alphabet. This level of abstraction is sufficient to prove the desired proper-
ties, demonstrating that relational analysis is not alwaysnecessary and that the ability
to selectively remove relational tracking is valuable. Thelast set of columns uses the
abstraction(χ⊤, σ), using our alphabet abstraction to abstract some characters of the
alphabet. This level of abstraction is also able to prove thedesired properties and does
so with improved time and memory performance than the previous level of abstraction,
demonstrating again the benefit of our alphabet abstraction.

Detecting XSS Vulnerabilities in an Open-source Web Application. Our second exper-
iment demonstrates the utility of the alphabet abstractionin detecting XSS vulnerabil-
ities in an open source application: Schoolmate. Schoolmate consists of 63 php files
with 8620 lines of code in total. The string analysis we report in this experiment is per-
formed fully automatically using the Stranger tool that we extended with the alphabet
abstraction.

The experimental results are summarized in Table 3. We first detect XSS vulnera-
bilities against the original code of schoolmate (denoted as O in Table 3). The first row
shows the result of using(χ⊤, σ⊥), a completely non-relational analysis using full set

15

(χ⊤, σ⊥) (χ, σ⊥) (χ, σ)
Res. DFA Time Mem Res. DFA Time Mem Res. DFA Time Mem

state(bdd) (sec) (kb) state(bdd) (sec) (kb) state(bdd) (sec) (kb)
M1 n 56(801) 0.030 621 y 50(3551) 0.061 1294 y 54(556) 0.019 517
M2 n 22(495) 0.017 555 y 21(604) 0.044 996 y 22(179) 0.01 538
M3 n 5(113) 0.01 417 y 3(276) 0.019 465 y 3(49) 0.005 298
M4 n 1201(25949)0.251 9495 y 181(9893)0.854 19322 y 175(4137)0.348 5945
M5 n 211(3195) 0.057 1676 y 62(2423) 0.102 1756 y 66(1173) 0.036 782

Table 1.Experimental results for the MFE benchmarks. DFA: the final DFA associated
with the checked program point. state: number of states. bdd: number of BDD nodes.
Result: “n” not verified, “y” verified.

(χ⊤, σ⊥) (χ, σ⊥)
Res. DFA Time Mem Res. DFA Time Mem

state(bdd) (sec) (kb) state(bdd)(sec) (kb)
S1 n 17(148) 0.012 444 n 65(1629) 0.345 1231
S2 n 27(229) 0.037 895 n 47(2714) 0.161 2684
S3 n 79(633) 0.067 1696 n 79(1900) 0.229 2826

(χ⊤, σ⊥) (χ⊤, σ)
S1’ y 17(147) 0.012 382 y 17(89) 0.006 287
S2’ y 17(141) 0.252 5686 y 9(48) 0.041 2155
S3’ y 127(1142)0.444 6201 y 125(743) 0.299 3802

Table 2.Experimental results for the XSS benchmarks.

of ASCII characters as the alphabet. The second row shows theresult of(χ⊤, σ), where
we apply alphabet abstraction by keeping only the characters appearing in the attack
pattern precisely. Each alphabet character is encoded using 3 bits. The coarser abstract
analysis discovers 114 potential XSS vulnerabilities out of 898 sinks, using 1052 sec-
onds for the string analysis (fwd) and 1104 seconds in total to explore all entries of 63
PHP scripts. The average size of a dependency graph (for a sink) has 33 nodes (each
node represents one string operation) and 33 edges, while the maximum one has 123
nodes and 129 edges (the graph contains cycles). The averagememory consumption is
62.5Mb for checking whether a sink is vulnerable, while the maximum consumption
is 191Mb. The final DFA on average consists of 1051 states and 5255 bdd nodes to
encode the transition relation, and the maximum one consists of 3593 states and 18005
bdd nodes. Compared to(χ⊤, σ⊥), using alphabet abstraction, we introduce zero false
alarms (number of reported vulnerabilities are 114 in both analyses) but reduce the anal-
ysis time 28% (from 1464 seconds to 1052) and reduce the memory usage 49% (from
62.5Mb to 31.9) on average.

Next we manually inserted 43 sanitization routines in the original code to remove
the detected vulnerabilities by sanitizing user inputs andchecked the resulting sanitized
code against XSS vulnerabilities again (denoted as S in Table 3). The third row shows
the result of using(χ⊤, σ⊥), while the fourth row shows the result of(χ⊤, σ). For
the sanitized code, using alphabet abstraction, we introduce zero false alarms (number
of reported vulnerabilities are 10 in both analyses), but reduce the analysis time 34%
(from 924 seconds to 609) and reduce the memory usage 47% (from 52.4Mb to 27.7)
on average. We have observed that the 10 vulnerabilities that were reported after we
inserted the sanitization routines are false positives dueto some unmodeled built-in

16

functions (which are conservatively considered to return any possible string value) and
path insensitive analysis. The 104 out of 114 vulnerabilities reported in the original
version of the Schoolmate application are real vulnerabilities that are eliminated by
the sanitization functions that we manually inserted to theapplication. To summarize,
our experimental results demonstrate that using alphabet abstraction, we are able to
considerably improve the performance without loss of accuracy of the analysis.

Abstraction Result Time(s) Mem (kb) DFA: state/bdd Dep. Graph: node/edge
#vuls/#sinks fwd/total avg/max avg max avg max

O (χ⊤, σ⊥) 114/898 1464/152662568/191317764/6894 2709/2438233/33 123/129
O (χ⊤, σ) 114/898 1052/1104 31987/894881051/52553593/1800533/33 123/129
S (χ⊤, σ⊥) 10/898 924/979 52466/145901725/6564 2164/1955341/41 143/149
S (χ⊤, σ) 10/898 609/662 27774/826401136/56893466/1736441/41 143/149

Table 3.Checking XSS Vulnerabilities in Schoolmate.

5 Related Work

Symbolic verification using automata have been investigated in other contexts (e.g.,
Bouajjani et al. [3, 4]). In this paper we focus specifically on verification of string ma-
nipulation operations, which is essential to detect and prevent web-related vulnerabili-
ties.

String analysis has been widely studied due to its relevancefor security. One influen-
tial approach has beengrammar-basedstring analysis [5]. This approach uses a context-
free grammar to represent the possible string operations and then over-approximates the
resulting language by converting the grammar to a regular language. This form of anal-
ysis has been used to check for various types of errors in Web applications [8, 11, 16].
This analysis is not relational and cannot verify the simpleprograms we discussed in
Section 2. Both Minamide [11] and Wassermann and Su [16] use multi-track DFAs,
known astransducers, to model string replacement operations. There are also several
recent string analysis tools that use symbolic string analysis based on DFA encod-
ings [7, 14, 20, 22]. Some of these tools employ symbolic execution and use a DFA
representation to model and verify string manipulation operations in Java [7,14]. In our
earlier work, we have used a DFA based symbolic reachabilityanalysis to verify the
correctness of string sanitization operations in PHP programs [20,22].

Unlike the relational string analysis approach we use in this paper, (which is based
on the results first presented by Yu et al. [21]) all of the above results use single-track
DFA and encode the reachable configurations of each string variable separately—i.e.,
they use a non-relational string analysis. As demonstratedin this paper, a relational
analysis enables verification of properties that cannot be verified with these earlier ap-
proaches.

However, relational string analysis can generate automatathat are exponentially
larger than the automata generated during non-relational string analysis. The alphabet
and relation abstractions we present in this paper enable usto improve the performance

17

of the relational string analysis by adjusting its precision. The earlier results on rela-
tional string analysis presented by Yu et al. [19, 21] do not use any abstraction tech-
niques.

While other work has employed abstraction techniques on automata [3], the novel
abstractions we present in this paper are based on string values and relations among
string variables. These abstractions allow useful heuristics based on the constants and
relations appearing in the input program and the property.

Compared to string analysis techniques based on bounded string constraint solvers
(e.g., HAMPI [10] and Kaluza [13]) an important differentiating characteristic of our
approach is the fact that it is sound and can, therefore, be used to prove absence of string
vulnerabilities.

Finally, this paper shows how string abstraction techniques that can be composed to
form an abstraction lattice that subsumes the previous workon string analysis and size
analysis. Our previous results, e.g., string analysis [20], composite (string+size) anal-
ysis [22], and relational string analysis [21] all become part of this abstraction lattice.
This is the first such generalized string analysis result as far as we know.

6 Conclusions

As web applications are becoming more and more dominant, security vulnerabilities
in them are becoming increasingly critical. The most commonsecurity vulnerabilities
in web applications are due to improper sanitization of userinputs, which in turn are
due to erroneous or improper use of string manipulation operations. In this paper we
have focused on a relational string analysis that can be usedto verify string manipu-
lation operations in web applications. We presented two string abstraction techniques
called alphabet and relation abstraction. These abstraction techniques enable us to ad-
just the precision and performance of our string analysis techniques. We also proposed
a heuristic to statically determine the abstraction level and empirically demonstrated the
effectiveness of our approach on open source web applications.

References

1. D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, C. Kruegel, E. Kirda, and G. Vigna.
Saner: Composing Static and Dynamic Analysis to Validate Sanitization in Web Applica-
tions. InProceedings of the Symposium on Security and Privacy, 2008.

2. C. Bartzis and T. Bultan. Widening arithmetic automata. In Proc. of the 16th International
Conference on Computer Aided Verification, pages 321–333, 2004.

3. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model checking. InProc. of the
16th International Conference on Computer Aided Verification (CAV), pages 372–386, 2004.

4. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. InProc. of
the 12th International Conference on Computer Aided Verification, pages 403–418, 2000.

5. A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis of string expressions.
In Proc. of the 10th International Static Analysis Symposium (SAS), volume 2694 ofLNCS,
pages 1–18. Springer-Verlag, June 2003.

6. N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a realistic tool for statically detecting all
buffer overflows in c.SIGPLAN Not., 38(5):155–167, 2003.

18

7. X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao. A static analysis framework for
detecting sql injection vulnerabilities. InProc. of the 31st Annual International Computer
Software and Applications Conference - Vol. 1, pages 87–96, Washington, DC, USA, 2007.

8. C. Gould, Z. Su, and P. Devanbu. Static checking of dynamically generated queries in
database applications. InProc. of the 26th International Conference on Software Engineer-
ing, pages 645–654, 2004.

9. J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige, T. Rauhe, and A. Sand-
holm. Mona: Monadic second-order logic in practice. InProc. of the International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pages
89–110, 1995.

10. Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and Michael D. Ernst. Hampi:
a solver for string constraints. InISSTA, pages 105–116, 2009.

11. Y. Minamide. Static approximation of dynamically generated web pages. InProc. of the
14th International World Wide Web Conference, pages 432–441, 2005.

12. Open Web Application Security Project (OWASP). Top ten project. http://www.
owasp.org/, May 2007.

13. Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao,Stephen McCamant, and Dawn
Song. A symbolic execution framework for javascript. InIEEE Symposium on Security and
Privacy, pages 513–528, 2010.

14. D. Shannon, S. Hajra, A. Lee, D. Zhan, and S. Khurshid. Abstracting symbolic execution
with string analysis. InTAICPART-MUTATION ’07, pages 13–22, DC, USA, 2007.

15. D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first step towards automated detection
of buffer overrun vulnerabilities. InProc. of the Network and Distributed System Security
Symposium, pages 3–17, 2000.

16. G. Wassermann and Z. Su. Sound and precise analysis of webapplications for injection
vulnerabilities. InProc. of the ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation, pages 32–41, 2007.

17. F. Yu, M. Alkhalaf, and T. Bultan. Generating vulnerability signatures for string manipulat-
ing programs using automata-based forward and backward symbolic analyses. InProc. of
the 24th IEEE/ACM International Conference on Automated Software Engineering (ASE),
2009.

18. F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An automata-based string analysis tool for php.
In Proc. of the 16th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 2010.

19. F. Yu, M. Alkhalaf, and T. Bultan. Patching vulnerabilities with sanitization synthesis. In
Proc. of the 33rd International Conference on Software Engineering (ICSE), 2011.

20. F. Yu, T. Bultan, M. Cova, and O. H. Ibarra. Symbolic string verification: An automata-based
approach. InProc. of the 15th International SPIN Workshop on Model Checking Software
(SPIN 2008), pages 306–324, 2008.

21. F. Yu, T. Bultan, and O. Ibarra. Relational string verification using multi-track automata.
In Proceedings of the 15th International Conference on Implementation and Application of
Automata (CIAA 2010), 2010.

22. F. Yu, T. Bultan, and O. H. Ibarra. Symbolic string verification: Combining string analysis
and size analysis. InProc. of the 15th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), pages 322–336, 2009.

