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Abstract. Verifying string manipulating programs is a crucial prablén com-
puter security. String operations are used extensivelyiwitzeb applications to
manipulate user input, and their erroneous use is the moshom cause of secu-
rity vulnerabilities in web applications. Unfortunatelyerifying string manipu-
lating programs is an undecidable problem in general andppgoximate string
analysis technique has an inherent tension between efficemd precision. In
this paper we present a set of sound abstractions for s@imgjstring operations
that allow for both efficient and precise verification of strimanipulating pro-
grams. Particularly, we are able to verify properties thablive implicit relations
among string variables. We first describe an abstractidedaégular abstrac-
tion which enables us to perform string analysis using ritditk automata as
a symbolic representation. We then introduce two otherrattsbns—alphabet
abstraction and relation abstraction—that can be usednbic@tion to tune the
analysis precision and efficiency. We show that these ati&trs form an ab-
straction lattice that generalizes the string analysisnigpes studied previously
in isolation, such as size analysis or non-relational gaimalysis. Finally, we em-
pirically evaluate the effectiveness of these abstradiohniques with respect
to several benchmarks and an open source application, dgrating that our
techniques can improve the performance without loss ofracgwof the analysis
when a suitable abstraction class is selected.

1 Introduction

String manipulation errors are a leading cause of secudiltyerabilities. For example,
the top three vulnerabilities in the Open Web ApplicatiosBéy Project (OWASP)’s
top ten list [12] are Cross-Site Scripting, Injection Fla@g., SQL injection), and Ma-
licious File Execution (MFE), all of which occur due to the@reous sanitization and
manipulation of input strings. This paper focuses on thélem of verifying asser-
tions about a program’s string-related properties, ehgyt, & string variable at a given
program point cannot contain a specific set of charactethabia string variable must
necessarily be a prefix of some other string variable. Thgsestof assertions can be
used to prove the absence of the vulnerabilities listed @jgwong others.

* This work is supported by an NSC grant 99-2218-E-004-0023Mivid NSF grants CCF-
0916112 and CCF-0716095.



The string verification problem is undecidable even for $ergiring manipulat-
ing programs [21]. In this paper we present sound abstratéiochniques that enable
us to verify properties of string manipulating programs.fité present theegular ab-
stractionin which values of string variables are represented as #raltk deterministic
finite automata. Multi-track automata read tuples of ch@racas input instead of only
single characters. Each string variable corresponds taiaylar track (i.e., a particular
position in the tuple). This representation enables i@hati string analysis [21], mean-
ing that it can be used to verify assertions that depend atioekhips among the string
variables.

Although we use a symbolic automata representation in dadienprove the scal-
ability of our analysis, the size of a multi-track automatepresenting a given string
relation can be exponentially larger than that of trad#isingle-track automata repre-
senting the (less-precise) non-relational projectiorthaf same relation. For example,
the 2-track automaton for the relatidh = ¢ X5 (whereX; andXs are string variables)
is exponential in the length ef whereas the projection to the single-track automaton
for X5 (which is X*) is constant-size and the projection f6¢ (which iscX*) is linear
in the length ofc. Moreover, the size of the alphabet for multi-track autcariatreases
exponentially with the number of program variables.

In order to improve the scalability of our approach, we ptwvo additional string
abstractions: 1Relation abstractioselects sets of string variables to analyze relation-
ally and analyzes the remaining string variables indepethgéelhe intent is to detect
relationships only for the string variables whose relaiare relevant for the assertions
being verified. 2)Alphabet abstractiorselects a subset of alphabet characters to ana-
lyze distinctly and merges the remaining alphabet charaioi® a special symbol. The
intent is to track only those characters that are relevarthfoassertions being verified.

These two abstractions are parameterized by the choicefichwrogram vari-
ables are analyzed in relation to each other versus beilgzabseparately and which
characters are merged versus being kept distinct; thug atteially form a family of
string abstractions. We show that this family forms an a&asion lattice that general-
izes previously existing string analyses into a single esble framework that can be
tuned to provide various trade-offs between precision artbpmance. In addition, we
propose a set of heuristics for choosing useful points mdbstraction lattice based on
the program being analyzed. Finally, we empirically shoat these abstractions meet
our goal of increasing the scalability of the relationailrgjranalysis while retaining the
precision required to verify realistic programs.

2 A Motivating Example

In this section we give a motivating example that shows thedrfer relational string
analysis based on the regular abstraction as well as thelnss$ of the relation and
alphabet abstractions proposed in this paper. Considesirtiide PHP script shown in
Figure 1. The script starts with assigning the user accondtpassword provided in
_GET array to two string variablesusr and$passwd in line 2 and line 3, respectively.
Then, it assigns the result of the concatenatiofuafr and$passwd to another string
variable$key in line 4. Theecho statement in line 6 is a sink statement. Since it uses



<?php
$usr = $_GET["usr"];
$passwd = $_GET[ "passwd"];
$key = $usr . S$passwd;
i f($key == "admi n1234")
echo "You are login as " . $usr

~NOoO b WNBRE

Fig. 1. A Simple Example

data directly from a user input, a taint analysis will idgnthis as a Cross Site Scripting
(XSS) vulnerability. That is, a malicious user may providei@put that contains the
string constankscri pt and execute a command leading to an XSS attack. However,
the assignment in line 4 states tisakr is the prefix offkey. The branch condition in
line 5 enforces the value gkey to beadni n1234 and the value afusr to be a prefix

of adnmi n1234. This ensures that thecho statement in line 6 cannot take any string
that contains the string constasicri pt as its input. Hence, this simple script is not
vulnerable and the taint analysis raises a false alarm.

Non-relational string analyses techniques (e.g., [5,2@])also raise a false alarm
for this simple script. Such an analysis will first observattim lines 1 and 2 variables
$usr and$passwd can have any string value since they are assigned user i,
then conclude that in line 3key can be any string. Note that the relationship among
$key, $usr and$passwd cannotbe tracked in non-relational string analysis. Although
such an analysis can conclude that the valugkefy is adni n1234 in line 6, it will still
report thatbusr can take any string value in line 6. Let the attack patterriierXSS
be specified as the following regular expressibii:<scri pt X* whereX' denotes the
alphabet which is the set of all ASCIl symbols. A non-relatibstring analysis will
conclude that thecho statement in line 6 is vulnerable, since #eho statement can
take a string value that matches the attack pattesnsf can take any string value in
line 6.

In our string analysis we first useregular abstractiorto represent possible values
of string variables in a program using multi-track autonjaid. To represent values of
n string variables, we use antrack automaton with an alphabet of s|2d". Hence, as
the number of variables increases, relational analysisrbes intractable. We propose
two additional abstraction techniques to improve the difitha of the relational string
analysis. We use thelation abstractiorto reducen, and thealphabet abstractiomo
reduce Y|, while preserving sufficient precision to prove the reqaimssertions.

The relation abstraction chooses subsets of string vasatal track relationally
while tracking the remaining variables independently. ther example shown in Fig-
ure 1, a relational analysis that trackssr and$key together butpasswd indepen-
dently is sufficient to prevent the false alarm at line 6. The track automaton for
$usr andskey is able to keep the prefix relation betweRrsr andskey at line 4. At
line 6 while $key is restricted taadm n1234, $usr is a strict prefix ofadm n1234,
and the relational analysis is able to conclude thatettteo statement cannot take a
value that matches the attack pattern.



The alphabet abstraction keeps a subset of the alphabeb&ydistinct and merges
the remaining symbols to a single abstract symbol. For elartipe program in Figure 1
can be analyzed more efficiently by keeping only the charactgistinct and merging
all other ASCII symbols into an abstract symhkpthus shrinking the alphabet from 256
characters to 2. That is, we can use one bit (instead of eitg)tfdus some reserved
characters to encode each track of the multi-track autaoméatoder this encoding, the
analysis can conclude that at linefsr is a string with length 9 that only contains
*, and theecho statement cannot take any string value that matches thek go#dtern
(¥* < x % % % x(< |[*)* in this case).

The relation and alphabet abstractions can be used onlyregtilar abstraction, or
composed together. In the example above, by combiningeelabstraction and alpha-
bet abstraction, we are able to decrease the alphabet dize wiulti-track automaton,
i.e., |2, from 2563 symbols to2? = 4 symbols, and still keep sufficient information
to prevent the false alarm.

On the other hand, instead of tracing relations among viesalone may simply
sanitize user inputs to prevent potential vulnerabiljteeg., using the following state-
ment at line 2:

$usr = str_replace("<", "", $_CET["usr"]);

The expressiorGET[ " usr "] returnsthe string entered by the user, andther epl ace
call replaces alk with the empty string. In this case, we can adopt a coarséraaids
tion for our string analysis. It is sufficient to use singlaek automata (abstract away
all relations among variables) with abstract alphgbetx} to conclude that thecho
statement cannot take any string value that matches trek ggdtern.

3 String Abstractions

In this section we first present the regular abstraction wallows us to analyze string
manipulating programs using multi-track automata as a sfimbepresentation. Then
we show that the relation and alphabet abstractions cantheased with the regular
abstraction (and with each other) to obtain a family of aations.

3.1 Regular Abstraction

The regular abstraction maps a set of string tuples to a sstriofy tuples accepted
by a multi-track automaton. This enables us to use detestigrfinite state automata
(DFAs) as a symbolic representation during string analysismulti-track automaton
(or multi-track DFA) is a DFA that transitions on tuples ofachcters rather than single
characters. For a given alphalietet ¥, = X U {\}, where\ ¢ X is a special padding
character. Am-track alphabet is defined &8* = X\ x --- x X (n times). A track
corresponds to a particular position in theuple. A multi-track DFA isaligned iff
for all wordsw accepted by the DFAy € X*\* (i.e., all padding is at the end of
the word). Using aligned multi-track automata gives us agsgntation that is closed
under intersection and can be converted to a canonical féendeterminization and
minimization. In the following, multi-track DFAs are assathto be aligned unless
explicitly stated otherwise.



The statements of a string manipulating program can be septed as word equa-
tions. Aword equatioris an equality relation between two terms, each of which is a fi
nite concatenation of string variables and string consta&egular abstraction abstracts
a given program by mapping the word-equations represettimgrogram statements
to multi-track DFA. Since word equations can not be pregisgbresented using multi-
track automata, we use the results presented in [21] to anist sound abstraction of
the given program (i.e., in the abstracted program the setloks that a variable can
take is a superset of the possible values that a variableas@ninn the concrete pro-
gram). Note that, since branch conditions can contain eegatms, we need to be able
to construct both an over- and an under-approximation ofzargword equation. We
construct multi-track automata that precisely represartivequations when possible,
and either over- or under-approximate the word equatichdéaired) otherwise.

We define a functiorconsTrucexpword equationb:bool) that takes a word
equation as input and returns a corresponding multi-traER,Df necessary either
over-approximating (ib = +) or under-approximating (ib = —). We use thecon-
sTRucTfunction to soundly approximate all word equatiarsd their boolean combi-
nations, including existentially-quantified word equasoThe boolean operations con-
junction, disjunction, and negation on word equations anedfed using intersection,
disjunction, and complementation of the correspondingirtiaick DFAS, respectively;
existentially-quantified word equations are handled ubmgomorphisms (by project-
ing the track that corresponds to the quantified variable).

Given an assignment statemetitnt of the form X := exp we first represent it as
a word equation of the forrX’ = ezp whereezp is an expression on the current state
variables, and{’ denotes the next state variables. Then we absttact by construct-
ing a multi-track automato/,.,,,; that over-approximates the corresponding word
equation as follows\/,,+ = consTRuCcK X’ = exp,+). A branch condition speci-
fied as an expressianp is similarly abstracted usingonsTRUCT X' = X A exzp, +)
for the then branch andonsTRuC X’ = X A —exp, +) for the else branch. The re-
sult of the regular abstraction consists of the control floapé of the original program
where each statement in the control flow graph is associaibdanmulti-track DFA
that over-approximates the behavior of the correspondatgmment.

The abstract domain that results from the regular abstracidefined as a lattice
on multi-track automata over an alphab&t. We denote this automata lattice &g =
(Mx-,C,U,M, L, T), whereMs is the set of multi-track automata over the alphabet
Xn. For My, My € Mxn, My C M, iff L(M;) C L(M-). The bottom element is
defined asL.(L) = 0 and the top element is defined &6T) = (X™)*. There may
be multiple automata that accept the same language; theelattats these automata
as equivalent. If we use minimized DFAs then there is a unautematon for each
point in the lattice up to isomorphism. All of the multi-tltaautomata in this lattice are
aligned [21] and hence all operations take aligned autoastaput and return aligned
automata as output.

The join operator cannot be defined simply as language umae she family of
regular languages is not closed under infinite union. lukte@ use the widening op-
erator from [2] as the join operator whedé, U My = M,V M,. The meet operator



can be defined from the join operator using language compier®t -1/ denote an
automaton such thdt(—M) = X* \ L(M); thenM; M My = —(=M;V-My).

Note that a similar automata lattice can also be defined fajlsitrack automata
over a single-track alphab&t wherel,; = (Mx,C, L, M1, L, T).

Fixpoint Computation for Forward Reachabilitfhe relational string analysis corre-
sponds to a least-fixpoint computation over the multi-tragstomata lattice. Each pro-
gram point is associated with a multi-track DFA whose trackerespond to string
variables and the multi-track DFA accepts the string-tsipkeat correspond to possi-
ble values that string variables can take at that partiquiagram point. In order to be
able to handle large alphabets of the multi-track DFA, wethsesymbolic DFA rep-
resentation provided by the MONA automata package [9]. is shmbolic automata
representation the transition relations of the DFA arees@nted as Multi-terminal Bi-
nary Decision Diagrams (MBDDSs).

We use a standard work-queue algorithm to compute the fikpear a program
statemenstmtthat is abstracted as the multi-track automatén,,,; the post-image is
computed as:

PosT(M, stmt) = (3X.M N Mgpyt)[ X' — X]

In other words, we take the intersection of the multi-tra¢i®Rhat represents the state-
ment with the multi-track DFA representing the currentesafl/), apply quantifier
elimination on the current state variabl&s(by projection), and rename the next state
variablesX’ as X (by arranging the indices in the MBDD representation) taagbthe
post-image DFA.

Since we use the widening operator as the join operator g thimfixpoint computa-
tion, the analysis is guaranteed to terminate. During tladyars, we report the assertion
violations as they are discovered. The analysis is soundt isuncomplete due to the
following approximations: (1) abstraction of word equasas multi-track DFAs, and
(2) use of the widening operator which over approximatesehguage union.

3.2 Alphabet Abstraction

In this section we formally define the alphabet abstracfidns abstraction targets the
values taken on by string variables, mapping multiple aygihaymbols to a single ab-
stract symbol. For example, consider a string variabledhatake the valuéab, abc}.
Abstracting the symbols andc yields the valugax, a x x}, wherex stands for both
b andc. The concretization of this abstract value would yield ta&ue {ab, ac, abe,
abb, ach, acc}. At the extreme this abstraction can abstract out all alpteakymbols
(in the above example, this would yield the abstract vdkie x x x}). In this case the
only information retained from the original value is thedgm of the strings; all infor-
mation about the content of the strings is lost. This abstmaés still useful in checking
properties related to string length—we will return to thand in Section 3.4.

The alphabet abstraction is parameterized by the choicenafmsymbols to ab-
stract, hence it forms a family of abstractions. This fanfidigms an abstraction lattice
Ly called thealphabet lattice(distinct from the automata lattice introduced earlier).
Let X, a finite alphabet, be the concrete alphabet, and 3’ be a special symbol



to represent characters that are abstracted away. An etbalphabet of is defined
as X’ U {x}, whereX’ C Y. The abstract alphabets af form a complete lattice
Ly =(P(XU{x}),Cx,U,N,0.,07)where the bottom element, is ¥ U {x}, the
top element+ is {x}, and the join and meet operations correspond to set int@eec
and union, respectively. The abstraction corresponds to mapping all the symbols in
the concrete alphabet to a single symbol, whereasorresponds to no abstraction at
all. The partial order oL 5 is defined as follows. Let;, o5 be two elements i y;,

o1 Cy o9, if oy C o1, and o1 Cy o9, if oy Cy oo andal 75 09.

Let oy Cx o02. We define the representation function for alphabet alistraas
follows: B, .0, : 2* — X* wheregl,, »,(w) = {w' | |0'| = Jw,Vil < i <
|w].(w(i) € o9 = W' (i) = w(i)) A (w(i) € o2 = w' (i) = x)}. The representation
function simply maps the symbols that we wish to abstradi¢abstract symbel, and
maps the rest of the symbols to themselves.

Since the symbolic analysis we defined in Section 3.1 usesraia as a symbolic
representation, we have to determine how to apply the agtteddstraction to automata.
We define the abstraction functiog, ,, on automata using the representation function
B0, as follows: LetM be a single track DFA over;; thena,, »,(M) = M’ where
M’ is a single track DFA ovets such thatL.(M') = {w | Jw’ € L(M).8s, o, (W) =
w}. Note that there may be multiple automatd that satisfies this constraint. However,
since we use minimized multi-track DFAs they will all be ecplent. We define the
concretization function,, », Similarly: Let M be a single track DFA over,; then
Yor,00 (M) = M’ whereM’ is a single track DFA oves; such thatL(M') = {w |
Jw' € L(M).Byy,00(w) = w'}.

The definitions we give above are not constructive. We giveastuctive definition
of the abstraction and concretization functions by firstrdiefj an alphabet-abstraction-
transducer that maps symbols that we wish to abstract tolikgaat symbok, and
maps the rest of the symbols to themselves.

An alphabet-abstraction-transducer ovgrand o, is a 2-track DFAM,, ,, =
<Q, 01 X 09,0, qo, F), where

- Q = {qo, sink}, F = {q0}, and
— Ya € 02.0(qo, (a,a)) = qo,
— Va € 01\ 02.0(qo, (a, %)) = qo-

Now, using the alphabet-abstraction-transducer, we campate the abstraction
of a DFA as a post-image computation, and we can compute theretization of
DFA as a pre-image computation. L&f be a single track DFA oves; with track
X. M, +,(X,X') denotes the alphabet transducer aveando, whereX and X’
correspond to the input and output tracks, respectivelydéfane the abstraction and
concretization functions on automata as:

— Qo 0, (M)
— Yo1,02 (M)

(3X.M N M,, ,(X, X")[X' — X], and
AX'(M]X — X' N My, 0, (X, X").



The definition can be extended to multi-track DFAs. Aétbe a multi-track DFA
overoy associated Wit X; | 1 < i < n}, aon oz (M) returns a multi-track DFA over
oy. On the other hand, whilg/ is a multi-track DFA ovewy, v,» o7 (M) returns a
multi-track DFA overot. We useM,~ ,» to denote the extension of the alphabet trans-
ducer to multi-track alphabet, where we atldo, (A, A)) = qo to M, ,» to deal with
the padding symbok and we useVl,» ,» (X;, X]) to denote the alphabet transducer
associated with track&; and X/. The abstraction and concretization of a multi-track
DFA M is done track by track as follows:

— Aoy oy (M) = VX3.(3X:. M 0 Moy o3 (X3, X)) [X] — X,], and
- ’70-11705 (M) = VXZ(HX{M[Xl = Xll] n Ma’i’:"7a'2"' (Xl, Xz/))

The abstraction lattic€ 5; defines a family of Galois connections between the au-
tomata lattice€ ;. Each element™ in the abstraction lattic€ s>» is associated with an
automata lattice€,» corresponding to multi-track automata with the alphaietFor
any pair of elements in the abstraction lattice 03 € Lx», if o' Cx of, then we can
define a Galois connection between the corresponding atadattices’,» and L,
using the abstraction and concretization function$ ,» andy,r ,». We formalize
this with the following property:

Forany X", ando?, o8 € Lxn, if o] Cx 0%, the functionsyg?_rgg and%?’g; define
a Galois connection between the lattices, and L,y where for anyM; € L,» and
M, € [:gg .

Qor o3 (M) E My & My E vor op (M)

3.3 Relation Abstraction

In this section we formally define the relation abstractibnis abstraction targets the
relations between string variables. The abstraction deters the sets of variables that
will be analyzed in relation to each other; for each such Isetanalysis computes a
multi-track automaton for each program point such that @estk of the automaton
corresponds to one variable in that set. In the most absiagetno relations are tracked
at all—there is a separate single-track automaton for eaghble and the analysis is
completely non-relational. On the other hand, in the mostige case we have one
single multi-track automaton for each program point.

Let X = {Xi,...X,} be afinite set of variables. Lgt C 2% wheref) ¢ x. We
say x defines a relation ok if (1) for anyx,x’ € x, x Z ¥/, and (2)Uy, x = X.
The set ofy that defines the relations of form a complete lattice, denoted 8.

— The bottom of the abstraction lattice, denoteq asis {{ X1, X», ..., X,,}}. This
corresponds to the most precise case where, for each prgiata single multi-
track automaton is used to represent the set of values fetraly variables where
each string variable corresponds to one track. This is fhesentation used in the
symbolic reachability analysis described in Section 3.1.



— Thetop of the abstraction lattice, denotedtasis {{ X1}, { X2}, { X5}, ..., { X} }-
This corresponds to the most coarse abstraction whereaédr grogram pointy
single-track automata are used and each automaton retgdéiseiset of values for
a single string variable. This approach has been used in samier work such
as [1,20].

The partial order of the abstraction latti€g; is defined as follows: Let, x2 be
two elements inC+,

— x1 Cx x2, ifforanyx € xo, there existsc’ € x; such thatk C x'.
- x1 Cx xe2 if x1 Ex x2 andy: # xo.

The symbolic reachability analysis discussed in Sectidncan be generalized to
a symbolic reachability analysis that works for each aletitva level in the abstraction
lattice L+. To conduct symbolic reachability analysis for the relatabstractiony €
L+, we store|x| multi-track automata for each program point, where for each y,
we have dx|-track DFA, denoted a&/,, where each track is associated with a variable
in x.

In order to define the abstraction and the concretizatiowtions, we define the
following projection and extension operations on automitax’ C x, the projection
of M, tox’, denoted ad/ |, is defined as thec'|-track DFA that acceptsuw’ | w €
L(Mx),VX; € x'w'[i] = w[i])}. Similarly,x’ C x, the extension ol tox, denoted
as My 1x, is defined as théx|-track DFA that accept$w | w' € L(Mx),VX,; €
x wli] = w'[i])}.

LetM, = {Mx | x € x} be a set of DFAs for the relatiog. The set of string
values represented By, is defined asZ(My) = L((,c, Mx Tx,), Wherex, =
{X1,X>,..., X, }. l.e., we extend the language of every automata¥lipto all string
variables and then take their intersection.

Now, let us define the abstraction and concretization fonstior the relation ab-
straction (which take a set of multi-track automata as irgna return a set of multi-
track automata as output).

Let x1 Cx xe; thenay, ,(M,, ) returns a set of DFA§M, | x' € x2}, where
for eachx’ € yo, My = (ﬂxexl_’x,ﬁx#@ My Tx,) lx, wherex, = {X; | X; €
x,x € x1,x Nx # 0}

Yx1.x2 (My, ) returns a set of DFA§M | x € x1}, where for eack € x1, Mx =

Mur e xinmzd (M Txi)) Ix, Wherexy = {X; | X; € X/, x" € x2,x' Nx # 0}.

Similar to the alphabet abstraction, the relation abstadattice L+ also de-
fines a family of Galois connections. Each element of theticeleabstraction lattice
corresponds to a lattice on sets of automata. For each L+ we define a lattice
Ly = (M, E, 1M, L, T). Given two sets of automatel, , M’ € M,, M, C M/,
if and only if L(M,) € L(M). The bottom element is defined &6 1) = () and the
top element is defined d5 T) = (X™)*. The join operator is defined asi, LI M =
{MxVM, | x € x,Mx € My, M, € M/} and the meet operator is defined as:
M, MM, = {~(=MxV-M,) | x € x, Mx € My, M, € M }.

For any pair of elements in the relation abstraction latficey. € L+, if x1 T
X2, then the abstraction and concretization functiegs,,, andy,, , define a Galois
connection betweef,, andZ,,,. We formalize this with the following property:
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Fig. 2. Some abstractions from the abstraction lattice and cooreipg analyses

Forany x1,x2 € Ly, if x1 Cx x2., then the functions, ,, and~,, ,, define a
Galois connection betweef,, andL,, where for anyM,, € £,, andM/ , € L,,:

Ax1,x2 (MX1) C M;& & M,, C Yoo ,on (M;@)

3.4 Composing Abstractions

As shown in the two previous sections, both alphabet andioalabstractions form
abstraction lattices which allow different levels of abstion. Combining these ab-
stractions leads to a product lattice where each point gl#tttice corresponds to the
combination of a particular alphabet abstraction with aipalar relation abstraction.
This creates an even larger set of Galois connections, oeabh possible combination
of alphabet and relation abstractions. Gierand X = {X1,..., X,,}, we define a
point in this product lattice as abstraction classvhich is a pair(x, o) wherey € L+
ando € Ly. The abstraction classes &fandX’ also form a complete lattice, of which
the partial order is defined a¢1,01) = (x2,02) if x1 C x2 ando; C os.

GivenX¥ andX = {X,..., X, }, we can select any abstraction class in the prod-
uct lattice during our analysis. The selected abstract@ss¢y, o) determines the pre-
cision and efficiency of our analysis. If we select the alusiva class(y,,0, ), we
conduct our most precise relational string analysis. Thagioms amongX will be kept
using onen-track DFA at each program point. If we seldgtr, o), we only keep
track of thelengthof each string variable individually. Although we abstraetay al-
most all string relations and contents in this case, thid kirpath-sensitive (w.r.t length
conditions on a single variable) size analysis can be usddtexrt buffer overflow vul-
nerabilities [6, 15]. If we selecty ;. , o), then we will be conducting relational size
analysis. Finally, earlier string analysis techniques tis& DFA, such as [1, 20], corre-
spond to the abstraction claggr, o, ), where multiple single-track DFAs ovér are
used to encode reachable states. As shown in [1, 17, 20}yftesof analysis is useful
for detecting XSS and SQLCI vulnerabilities.

Figure 2 summarizes the different types of abstractionsddia be obtained using
our abstraction framework. The alphabet and relation abtms can be seen as two
knobs that determine the level of the precision of our stamnglysis. The alphabet
abstraction knob determines how much of the string congeabstracted away. In the
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limit, the only information left about the string values fsetr lengths. On the other
hand, the relation abstraction knob determines which setridibles should be analyzed
in relation to each other. In the limit, all values are pregekcto individual variables.
Different abstraction classes can be useful in differesesaAn important question
is how to choose aroper abstraction class for a given verification problem; this is
addressed in the next section.

3.5 Heuristics and Refinement for Abstraction Selection

Since the space of total possible abstractions using théorland alphabet abstrac-
tions defined above is very large, we must have some meangitedghich specific
abstractions to employ in order to prove a given property. éwice should be as ab-
stract as possible (for efficiency) while remaining pre@seugh to prove the property
in question. In this section we propose a set of heuristicen@king this decision.

The intuition behind these heuristics is to let the propartgler question guide our
choice of abstraction. Consider the set of string varialilethat appear in the assertion
of a property. Letz be the dependence graph f¥f generated from the program being
verified. Finally, letX be the set of string variables appearingidrandC' be the set
of characters used in any string constants that appe&r am in the assertion itself.
It is the characters i’ and the relations between the variablesXinthat are most
relevant for proving the given property, and therefore ¢hedations and characters
should be preserved by the abstraction—the remaininghlagand characters can be
safely abstracted away without jeopardizing the verifarati

In choosing the alphabet abstraction, our heuristic keegigct all characters ap-
pearing inC' C C and merges all remaining characters of the alphabet togatbehe
special charactex. Initially, C' is the set of characters that appear in the assertion itself.
C can be iteratively refined by adding selected charactefs in

In choosing the relation abstraction, it is possible to $jngwoup all variables in
X together and track them relationally while tracking allethariables independently,
but this choice might be more precise than necessary. Gamaidypothetical property
(X1 = X2 A X3 = Xy). Itis not necessary to track the relations betwégnand
either of X3 or X4 (and similarly forXs)—it is sufficient to track the relations between
X, and X, and separately the relations betwekp and X3. Therefore our heuristic
partitionsX into distinct groups such that the variables within eactugrare tracked
relationally with each other. To partitiaki, our heuristic first groups together variables
that appear in the same word equation in the property beinfiace(e.g.,X; with Xo
andXs with X,). The partition can be iteratively refined by using the delggrty graph
G to merge groups containing variables that depend on eaeh oth

This heuristic can also be extended to take into account geikitivity. Let¢ be
the path condition for the assertion (or the sink statemamd).X, denote the set of
string variables appearing in We first extend the partition base frafMto X U X,.
Initially, each variable forms an individual group by itsélhe partition is then refined
by merging these individual groups with groups that containables that these new
variables depend on. For instance, for the motivating exarsipown in Figure 1, we
haveX = {$usr} and X, = {$key}. The initial partition is{{$usr }, {$key}}, and
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the refined partition ig{$usr, $key}} which enablesusr and$key to be tracked
relationally.

3.6 Handling Complex String Operations

We extend our analysis to other complex string operatioastive been previously
defined using single-track automata [20, 22], e.g., rephecs, prefix, and suffix. We
first extract the set of values for each variables from thetirmalck DFA M, as a
single track DFA (using projection), then compute the resiithe string operation
using these single-track DFAs. The post imag@&bf can then be computed using the
resulting DFAs.

We must modify these operations to ensure the soundnese affihabet abstrac-
tion. Consider RPLACE(M;, Ms,, M3) [20], which returns the DFA accepting
{wicrwacs ... wicpwr11 |k > 0,wizqwazs . . wprpwryr € L(My),Vi, z; €
L(Ms), w; does not contain any substring acceptedMy, ¢; € L(Ms)}. As an in-
stance, |eTL(M1) = {ab}, L(MQ) = {C}, L(Mg) = {a} REPLACE(Ml, M, Mg)
will return M that acceptqab}, the same adf;, since there is no match appearing
in any accepted string. However, lgt, x} be the abstraction alphabet. After applying
the alphabet abstraction, we haliéM;) = {ax}, L(M}) = {x}, L(M}) = {a}, and
RePLACE(M{, M}, M) will return M’ that accept§aa} instead. Sincé (o, (M)) =
{ax} € L(M’), the result in the concrete domain is not included in therabstlomain
after abstraction. It is unsound applying the replace djmerairectly.

AssumeM;, M, M5 using the same abstraction alphabefo ensure soundness
we returne, (REPLACE(Y, (M1), Yo (Ma), vo (M3)) if L(My) € L(Ms)andL(Ms) &
L(Mz), so that all possible results in the concrete domain areided in the abstract
domain after abstraction. We returieRLACE(M;, M, M3), otherwise.

4 Implementation and Experiments

We have incorporated alphabet abstraction to Strangemigh is an automata-based
string analysis tool for PHP programs. However, Strangéhniatpoint performs string
analysis on dependency graphs and is limited to non-relatenalysis, i.e., the bottom
of the relation abstraction lattice. In order to implemeut celational string analysis
we extended the symbolic string analysis library that Sfeamises to support (abstract)
relational analysis with multi-track automata. We comghilee extended Stranger string
analysis library separate from the Stranger front-end fgément the relational string
analysis. To evaluate the proposed relation abstractierimplemented the relational
analysis by directly calling the extended Stranger strimgjsis library functions.

We ran two experiments. In the first experiment we used tweoafdienchmarks: 1)
Malicious File Execution (MFE) benchmarks, and 2) Crogs-Stripting (XSS) bench-
marks. These benchmarks come from five open source PHP aipqtis. We first used
the Stranger front-end to conduct taint analysis on these Bpplications. Stranger
taint-analyzer identified the tainted sinks (i.e., semsifirogram points that might be
vulnerable) for each type of vulnerability and generatesl dependency graphs for
these potentially vulnerable program segments. We thereimgnted the relational
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string analysis for several of these potentially vulneggirogram segments by using
the extended Stranger string analysis library functions.implemented the relational
string analysis for several abstraction classes to ealinat effectiveness of the pro-
posed abstractions.

In the second experiment we evaluated the alphabet abstrdmt directly using
Stranger (that we extended with alphabet abstraction) aspan source web applica-
tion, called Schoolmate. For this application we lookedX&S (Cross-Site Scripting)
vulnerabilities and conducted the string analysis bothaitd without alphabet abstrac-
tion and compared the results. Both experiments were céedwun the Linux 2.6.35
machine equipped with Intel Pentium Dual CPU 2.80 GHz and argrd.9GB. The
applications used in our experiments are available at:
http://sosl ab. nccu. edu. t w appl i cati ons.

MFE benchmarks.This set of benchmarks demonstrates the usefulness of ldne re
tional analysis as well as the utility of our relation abstien. We used 5 benchmarks:

M1: PBLguestbook-1.32, pblguestbook.php (588): MyEasyMarket-4.1, prod.php (94)
M3: MyEasyMarket-4.1, prod.php (189) M4: php-fusion-6.01, dibackup.php (111)
M5: php-fusion-6.01, forumgrune.php (28)

Each benchmark is extracted from an open source web appficas described
above and contains a program point that executes a file ape(aiclude, fopen, etc)
whose arguments may be influenced by external inputs. FongleaM1 corresponds
to the program point at line 536 in pblguestbook.php disted in the application
PBLguestbook-1.32. Given an abstraction class and a bem&hwe implemented
the corresponding string analysis using the extended @rastring manipulation li-
brary. Our analysis constructs a multi-track DFA for eachgpam point that over-
approximates the set of strings that form the argumentdhidénd of the analysis these
DFAs are intersected with a multi-track DFA that charaetsithe vulnerable strings
that expose the program to MFE attacks. We report an errbeifrttersection is non-
empty. None of the MFE benchmarks we analyzed contained taalaculnerability.
The MFE vulnerabilities correspond to scenarios such agaaczessing a file in an-
other user’s directory. Such vulnerabilities depend onréiation between two string
values (for example, the user name and the directory narmeggan analysis that does
not track the relations between string variables woulcerfatse alarms.

XSS benchmarksThis set of benchmarks (again extracted from open sourceaweb
plications) demonstrates the utility of the alphabet @uston. We use 3 benchmarks:

S1 MyEasyMarket-4.1, trans.php (2182 Aphpkb-0.71, saa.php(87)
S3 BloggIT 1.0, admin.php (23)

To identify XSS attacks we use a predetermined set of attatienms specified
as a regular language. These attack patterns represemfssthiat potentially make a
program vulnerable to XSS attacks. Again, given an abstractass and a benchmark,
we implemented the corresponding string analysis usingxitended Stranger string
manipulation library. Our analysis constructs multi-k&di-As to over-approximate the
set of possible strings values at sinks and intersects IEAs with the attack patterns
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to detect potential vulnerabilities. All three benchmankesanalyzed were vulnerable.
We modified the benchmarks to fix these vulnerabilities ardterthree new versions
(S1’, S2’, and S3) that are secure against XSS attacks.

Experimental ResultsThe results for the MFE benchmarks are summarized in Table 1.
All DFAs are symbolically encoded using MBDDs (where MBDDs ased to repre-
sent the transition relation of the DFA). The column lab€lgdte” shows the number
of states of the DFA while the column labeled "bdd” shows thenber of nodes in the
MBDD that encodes the transition relation of the DFA (i.ecdrresponds to the size of
the transition relation of the DFA). Note that the transitielation size decreases when
we use a coarser alphabet abstraction. However, using aesaaphabet may induce
nondeterministic edges, and as shown in Table 1, in some cdeenumber of states
may increase after determinization and minimization.

The first set of columns use the abstractign, o, ), i.e., a completely non-relational
analysis using a full alphabet (similar to the analyses gsed in [18, 20]). This level
of abstraction fails to prove the desired properties argkrtlse alarms, demonstrating
the importance of a relational analysis. The next set ofrooksl uses the abstraction
(x,01), using our heuristic to track a subset of variables relatignThis level of ab-
straction is able to prove all of the desired properties, atestrating the utility of both
the relational analysis and of our heuristic. Finally, tastlset of columns uses the
abstraction(y, ), using our heuristics for both relation and alphabet abstma. This
level of abstraction is also able to verify all the desiredgarties, and does so with
even better time and memory performance than the previgakdéabstraction.

The results for the XSS benchmarks are summarized in Tablée first three
rows show results for the unmodified benchmarks. Since oailysis is sound and all
three benchmarks are vulnerable to XSS attacks, we canribt tree desired proper-
ties regardless of the abstractions used. The last threestoow results for the modified
benchmarks whose vulnerabilities have been patched, areftiie are secure. The first
set of columns uses the abstraction-, o, ), i.e., a completely non-relational analysis
using a full alphabet. This level of abstraction is suffitieEnprove the desired proper-
ties, demonstrating that relational analysis is not alwesessary and that the ability
to selectively remove relational tracking is valuable. Tt set of columns uses the
abstractionx T, o), using our alphabet abstraction to abstract some chasaztehe
alphabet. This level of abstraction is also able to proveltsired properties and does
so with improved time and memory performance than the presdievel of abstraction,
demonstrating again the benefit of our alphabet abstraction

Detecting XSS Vulnerabilities in an Open-source Web Agfitin. Our second exper-
iment demonstrates the utility of the alphabet abstradtiatetecting XSS vulnerabil-
ities in an open source application: Schoolmate. Scho@mansists of 63 php files
with 8620 lines of code in total. The string analysis we répothis experiment is per-
formed fully automatically using the Stranger tool that wéeaded with the alphabet
abstraction.

The experimental results are summarized in Table 3. We fatgtatl XSS vulnera-
bilities against the original code of schoolmate (denote®an Table 3). The first row
shows the result of usingyr, o, ), a completely non-relational analysis using full set
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(xT,01) (x,01) (x; o)

Res DFA Time|Mem||{Res| DFA |Time|Mem||Res| DFA [Time[Mem

state(bdd) | (sec)| (kb) state(bdd) (sec)| (kb) state(bdd) (sec)| (kb)

MI|| n | 56(801) |0.03( 621|] y | 50(3551)|0.061 1294][ y | 54(556) |0.019 517
M2[[ n | 22(495) |0.017 555|] y | 21(604)[0.044 996 || y | 22(179) | 0.01| 538
M3[[ n | 5(113) |0.01|417]|[ y | 3(276) |0.019 465 || y | 3(49) |0.005 298
M4|[ n [1201(25949)0.251 9495 y 181(9893)0.854193274| y [175(4137)0.3485945|
M5([ n | 211(3195) |O 0571676 62(2423)|0.102 1756(| y | 66(1173)|0.03¢ 782

Table 1.Experimental results for the MFE benchmarks. DFA: the fineARssociated

with the checked program point. state: number of states. tuatiber of BDD nodes.
Result: “n” not verified, “y” verified.

(xT,01) (x,01)
Res| DFA |[Time[Mem||Res| DFA |Time[Mem
state(bdd) (sec)| (kb) state(bdd) (sec)| (kb)

S1| n | 17(148) [0.012 444 n |65(1629)[0.3451231]
S2| n | 27(229) [0.037 895|| n |47(2714)/0.1612684
S3| n | 79(633) {0.0671696|| n | 79(1900)0.229 2826
(xT,01) (x7,0)

y | 17(147) |0.012 382|| y 17(89) |0.006 287
3 y T7(141) [0.2525686] y | 9(48) [0.0412155
S3’ 127(1142)0.4446201|| y |125(743)[0.299 3802

Table 2. Expenmental results for the XSS benchmarks.

of ASCII characters as the alphabet. The second row showsshé of(y+, o), where
we apply alphabet abstraction by keeping only the chamseepearing in the attack
pattern precisely. Each alphabet character is encoded @4iits. The coarser abstract
analysis discovers 114 potential XSS vulnerabilities du838 sinks, using 1052 sec-
onds for the string analysis (fwd) and 1104 seconds in totakplore all entries of 63
PHP scripts. The average size of a dependency graph (fokalsis 33 nodes (each
node represents one string operation) and 33 edges, wkilméximum one has 123
nodes and 129 edges (the graph contains cycles). The avesagery consumption is
62.5Mb for checking whether a sink is vulnerable, while theximum consumption
is 191Mb. The final DFA on average consists of 1051 states @58 5dd nodes to
encode the transition relation, and the maximum one cansf8593 states and 18005
bdd nodes. Compared tq+, 0, ), using alphabet abstraction, we introduce zero false
alarms (number of reported vulnerabilities are 114 in batdyses) but reduce the anal-
ysis time 28% (from 1464 seconds to 1052) and reduce the nyeunsage 49% (from
62.5Mb to 31.9) on average.

Next we manually inserted 43 sanitization routines in thgioal code to remove
the detected vulnerabilities by sanitizing user inputs@metked the resulting sanitized
code against XSS vulnerabilities again (denoted as S ireT&bIThe third row shows
the result of using xr,c ), while the fourth row shows the result ¢k, o). For
the sanitized code, using alphabet abstraction, we int®daro false alarms (number
of reported vulnerabilities are 10 in both analyses), bdtoe the analysis time 34%
(from 924 seconds to 609) and reduce the memory usage 4786 204Mb to 27.7)
on average. We have observed that the 10 vulnerabilitig¢sntbee reported after we
inserted the sanitization routines are false positivestdusome unmodeled built-in
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functions (which are conservatively considered to retumn@ossible string value) and
path insensitive analysis. The 104 out of 114 vulnerabditieported in the original
version of the Schoolmate application are real vulnerédslithat are eliminated by
the sanitization functions that we manually inserted togpplication. To summarize,
our experimental results demonstrate that using alphdistteetion, we are able to
considerably improve the performance without loss of aamcyiof the analysis.

Abstractior] Result Time(s) | Mem (kb) DFA: state/bdd |Dep. Graph: node/edge
#vuls/#sinks fwd/total | avg/max avg max avg max
O|(xT,01)| 114/898 [1464/152662568/19131}764/6894|2709/2438233/33 123/129
O| (x7,0) 114/898 [1052/1104 31987/8948§1051/525%3593/1800%33/33 123/129
S| (xT,0.) 10/898 924/979 |52466/14590[L725/6564|2164/1955341/41] 143/149
S| (xT,0) 10/898 609/662 | 27774/8264(1136/56893466/1736441/41 143/149
Table 3.Checking XSS Vulnerabilities in Schoolmate.

5 Related Work

Symbolic verification using automata have been investijateother contexts (e.g.,
Bouajjani et al. [3,4]). In this paper we focus specificaltyeerification of string ma-
nipulation operations, which is essential to detect angdereweb-related vulnerabili-
ties.

String analysis has been widely studied due to its relevioreecurity. One influen-
tial approach has begmammar-basedtring analysis [5]. This approach uses a context-
free grammar to represent the possible string operatiashth@m over-approximates the
resulting language by converting the grammar to a reguteydage. This form of anal-
ysis has been used to check for various types of errors in \plications [8, 11, 16].
This analysis is not relational and cannot verify the siniegrams we discussed in
Section 2. Both Minamide [11] and Wassermann and Su [16] usié-track DFAs,
known astransducersto model string replacement operations. There are alseralev
recent string analysis tools that use symbolic string asiglpased on DFA encod-
ings [7, 14, 20, 22]. Some of these tools employ symbolic etien and use a DFA
representation to model and verify string manipulationrapens in Java [7,14]. In our
earlier work, we have used a DFA based symbolic reachalaitiplysis to verify the
correctness of string sanitization operations in PHP @nogr[20, 22].

Unlike the relational string analysis approach we use is plaiper, (which is based
on the results first presented by Yu et al. [21]) all of the a&bmsults use single-track
DFA and encode the reachable configurations of each stringbla separately—i.e.,
they use a non-relational string analysis. As demonstriamtedis paper, a relational
analysis enables verification of properties that cannotdrie@d with these earlier ap-
proaches.

However, relational string analysis can generate autonhaiaare exponentially
larger than the automata generated during non-relatieriagsanalysis. The alphabet
and relation abstractions we present in this paper enaliteiogprove the performance
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of the relational string analysis by adjusting its preaisi®@he earlier results on rela-
tional string analysis presented by Yu et al. [19, 21] do rs# any abstraction tech-
niques.

While other work has employed abstraction techniques oonaata [3], the novel
abstractions we present in this paper are based on strings/aind relations among
string variables. These abstractions allow useful haosiftased on the constants and
relations appearing in the input program and the property.

Compared to string analysis techniques based on boundeg stmstraint solvers
(e.g., HAMPI [10] and Kaluza [13]) an important differerttreg characteristic of our
approachis the fact thatitis sound and can, therefore, dxtogprove absence of string
vulnerabilities.

Finally, this paper shows how string abstraction techréghat can be composed to
form an abstraction lattice that subsumes the previous wortring analysis and size
analysis. Our previous results, e.g., string analysis, [20Inposite (string+size) anal-
ysis [22], and relational string analysis [21] all becomet joé this abstraction lattice.
This is the first such generalized string analysis resulanag we know.

6 Conclusions

As web applications are becoming more and more dominantrisewulnerabilities
in them are becoming increasingly critical. The most commsecurity vulnerabilities
in web applications are due to improper sanitization of uisputs, which in turn are
due to erroneous or improper use of string manipulationatpers. In this paper we
have focused on a relational string analysis that can be taseelrify string manipu-
lation operations in web applications. We presented twiagstbstraction techniques
called alphabet and relation abstraction. These absiratd#thniques enable us to ad-
just the precision and performance of our string analysisrigjues. We also proposed
a heuristic to statically determine the abstraction lemel@mpirically demonstrated the
effectiveness of our approach on open source web applisatio
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